Blog
/
AI
/
July 26, 2022

Self-Learning AI for Zero-Day and N-Day Attack Defense

Explore the differences between zero-day and n-day attacks on different customer servers to learn how Darktrace detects and prevents cyber threats effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022

Key Terms:

Zero-day | A recently discovered security vulnerability in computer software that has no currently available fix or patch. Its name come from the reality that vendors have “zero days” to act and respond.

N-day | A vulnerability that emerges in computer software in which a vendor is aware and may have already issued (or are currently working on) a patch or fix. Active exploits often already exist and await abuse by nefarious actors.

Traditional security solutions often apply signature-based-detection when identifying cyber threats, helping to defend against legacy attacks but consequently missing novel ones. Therefore, security teams often lend a lot of focus to ensuring that the risk of zero-day vulnerabilities is reduced [1]. As explored in this blog, however, organizations can face just as much of a risk from n-day attacks, since they invite the most attention from malicious actors [2]. This is due in part to the reduced complexity, cost and time invested in researching and finding new exploits compared with that found when attackers exploit zero-days. 

This blog will examine both a zero-day and n-day attack that two different Darktrace customers faced in the fall of 2021. This will include the activity Darktrace detected, along with the steps taken by Darktrace/Network to intervene. It will then compare the incidents, discuss the possible dangers of third-party integrations, and assess the deprecation of legacy security tools.

Revisiting zero-day attacks 

Zero-days are among the greatest concerns security teams face in the era of modern technology and networking. Defending critical systems from zero-day compromises is a task most legacy security solutions are often unable to handle. Due to the complexity of uncovering new security flaws and developing elaborate code that can exploit them, these attacks are often carried out by funded or experienced groups such as nation-state actors and APTs. One of history’s most prolific zero-days, ‘Stuxnet’, sent security teams worldwide into a global panic in 2010. This involved a widespread attack on Iranian nuclear infrastructure and was widely accepted to be a result of nation-state actors [3]. The Stuxnet worm took advantage of four zero-day exploits, compromising over 200,000 devices and physically damaging around 10% of the 9,000 critical centrifuges at the Natanz nuclear site. 

More recently, 2021 saw the emergence of several critical zero-day vulnerabilities within SonicWall’s product suite [4]. SonicWall is a security hardware manufacturer that provides hardware firewall devices, unified threat management, VPN gateways and network security solutions. Some of these vulnerabilities lie within their Secure Mobile Access (SMA) 100 series (for example, CVE-2019-7481, CVE-2021-20016 and CVE-2021-20038 to name a few). These directly affected VPN devices and often allowed attackers easy remote access to company devices. CVE-2021-20016 in particular incorporates an SQL-Injection vulnerability within SonicWall’s SSL VPN SMA 100 product line [5]. If exploited, this defect would allow an unauthenticated remote attacker to perform their own malicious SQL query in order to access usernames, passwords and other session related information. 

The N-day underdog

The shadow cast by zero-day attacks often shrouds that of n-day attacks. N-days, however, often pose an equal - if not greater - risk to the majority of organizations, particularly those in industrial sectors. Since these vulnerabilities have fixes available, all of the hard work around research is already done; malicious actors only need to view proof of concepts (POCs) or, if proficient in coding, reverse-engineer software to reveal code-changes (binary diffing) in order to exploit these security flaws in the wild. These vulnerabilities are typically attributed to opportunistic hackers and script-kiddies, where little research or heavy lifting is required.  

August 2021 gave rise to a critical vulnerability in Atlassian Confluence servers, namely CVE-2021-26084 [6]. Confluence is a widely used collaboration wiki tool and knowledge-sharing platform. As introduced and discussed a few months ago in a previous Darktrace blog (Explore Internet-Facing System Vulnerabilities), this vulnerability allows attackers to remotely execute code on internet-facing servers after exploiting injection vulnerabilities in Object-Graph Navigation Language (OGNL). Whilst Confluence had patches and fixes available to users, attackers still jumped on this opportunity and began scanning the internet for signs of critical devices serving this outdated software [7]. Once identified, they would  exploit the vulnerability, often installing crypto mining software onto the device. More recently, Darktrace explored a new vulnerability (CVE-2022-26134), disclosed midway through 2022, that affected Confluence servers and data centers using similar techniques to that found in CVE-2021-26084 [8]. 

SonicWall in the wild – 1. Zero-day attack

At the beginning of August 2021, Darktrace prevented an attack from taking place within a European automotive customer’s environment (Figure 1). The attack targeted a vulnerable internet-facing SonicWall VPN server, and while the attacker’s motive remains unclear, similar historic events suggest that they intended to perform ransomware encryption or data exfiltration. 

Figure 1: Timeline of the SonicWall attack 

Darktrace was unable to confirm the definite tactics, techniques and procedures (TTPs) used by the attacker to compromise the customer’s environment, as the device was compromised before Darktrace installation and coverage. However, from looking at recently disclosed SonicWall VPN vulnerabilities and patterns of behaviour, it is likely CVE-2021-20016 played a part. At some point after this initial infection, it is also believed the device was able to move laterally to a domain controller (DC) using administrative credentials; it was this server that then initiated the anomalous activity that Darktrace detected and alerted on. 

On August 5th 2021 , Darktrace observed this compromised domain controller engaging in unusual ICMP scanning - a protocol used to discover active devices within an environment and create a map of an organization’s network topology. Shortly after, the infected server began scanning devices for open RDP ports and enumerating SMB shares using unorthodox methods. SMB delete and HTTP requests (over port 445 and 80 respectively) were made for files named delete.me in the root directory of numerous network shares using the user agent Microsoft WebDAV. However, no such files appeared to exist within the environment. This may have been the result of an attacker probing devices in the network in an effort to see their responses and gather information on properties and vulnerabilities they could later exploit. 

Soon the infected DC began establishing RDP tunnels back to the VPN server and making requests to an internal DNS server for multiple endpoints relating to exploit kits, likely in an effort to strengthen the attacker’s foothold within the environment. Some of the endpoints requested relate to:

-       EternalBlue vulnerability 

-       Petit Potam NTLM hash attack tool

-       Unusual GitHub repositories

-       Unusual Python repositories  

The DC made outgoing NTLM requests to other internal devices, implying the successful installation of Petit Potam exploitation tools. The server then began performing NTLM reconnaissance, making over 1,000 successful logins under ‘Administrator’ to several other internal devices. Around the same time, the device was also seen making anonymous SMBv1 logins to numerous internal devices, (possibly symptomatic of the attacker probing machines for EternalBlue vulnerabilities). 

Interestingly, the device also made numerous failed authentication attempts using a spoofed credential for one of the organization’s security managers. This was likely in an attempt to hide themselves using ‘Living off the Land’ (LotL) techniques. However, whilst the attacker clearly did their research on the company, they failed to acknowledge the typical naming convention used for credentials within the environment. This ultimately backfired and made the compromise more obvious and unusual. 

In the morning of the following day, the initially compromised VPN server began conducting further reconnaissance, engaging in similar activity to that observed by the domain controller. Until now, the customer had set Darktrace RESPOND to run in human confirmation mode, meaning interventions were not made autonomously but required confirmation by a member of the internal security team. However, thanks to Proactive Threat Notifications (PTNs) delivered by Darktrace’s dedicated SOC team, the customer was made immediately aware of this unusual behaviour, allowing them to apply manual Darktrace RESPOND blocks to all outgoing connections (Figure 2). This gave the security team enough time to respond and remediate before serious damage could be done.

Figure 2: Darktrace RESPOND model breach showing the manually applied “Quarantine Device” action taken against the compromised VPN server. This screenshot displays the UI from Darktrace version 5.1

Confluence in the wild – 2. N-day attack

Towards the end of 2021, Darktrace saw a European broadcasting customer leave an Atlassian Confluence internet-facing server unpatched and vulnerable to crypto-mining malware using CVE-2021-26084. Thanks to Darktrace, this attack was entirely immobilized within only a few hours of the initial infection, protecting the organization from damage (Figure 3). 

Figure 3: Timeline of the Confluence attack

On midday on September 1st 2021, an unpatched Confluence server was seen receiving SSL connections over port 443 from a suspicious new endpoint, 178.238.226[.]127.  The connections were encrypted, meaning Darktrace was unable to view the contents and ascertain what requests were being made. However, with the disclosure of CVE-2021-26084 just 7 days prior to this activity, it is likely that the TTPs used involved injecting OGNL expressions to Confluence server memory; allowing the attacker to remotely execute code on the vulnerable server.

Immediately after successful exploitation of the Confluence server, the infected device was observed making outgoing HTTP GET requests to several external endpoints using a new user agent (curl/7.61.1). Curl was used to silently download and configure multiple suspicious files relating to XMRig cryptocurrency miner, including ld.sh, XMRig and config.json. Subsequent outgoing connections were then made to europe.randomx-hub.miningpoolhub[.]com · 172.105.210[.]117 using the JSON-RPC protocol, seen alongside the mining credential maillocal.confluence (Figure 4). Only 3 seconds after initial compromise, the infected device began attempting to mine cryptocurrency using the Minergate protocol but was instantly and autonomously blocked by Darktrace RESPOND. This prevented the server from abusing system resources and generating profits for the attacker.

Figure 4: A graph showing the frequency of external connections using the JSON-RPC protocol made by the breach device over a 48-hour window. The orange-red dots represent models that breached as a result of this activity, demonstrating the “waterfall” effect commonly seen when a device suffers a compromise. This screenshot displays the UI from Darktrace version 5.1

In the afternoon, the malware persisted with its infection. The compromised server began making successive HTTP GET requests to a new rare endpoint 195.19.192[.]28 using the same curl user agent (Figures 5 & 6). These requests were for executable and dynamic library files associated with Kinsing malware (but fortunately were also blocked by Darktrace RESPOND). Kinsing is a malware strain found in numerous attack campaigns which is often associated with crypto-jacking, and has appeared in previous Darktrace blogs [9].

Figure 5: Cyber AI Analyst summarising the unusual download of Kinsing software using the new curl user agent. This screenshot displays the UI from Darktrace version 5.1

The attacker then began making HTTP POST requests to an IP 185.154.53[.]140, using the same curl user agent; likely a method for the attacker to maintain persistence within the network and establish a foothold using its C2 infrastructure. The Confluence server was then again seen attempting to mine cryptocurrency using the Minergate protocol. It made outgoing JSON-RPC connections to a different new endpoint, 45.129.2[.]107, using the following mining credential: ‘42J8CF9sQoP9pMbvtcLgTxdA2KN4ZMUVWJk6HJDWzixDLmU2Ar47PUNS5XHv4Kmfdh8aA9fbZmKHwfmFo8Wup8YtS5Kdqh2’. This was once again blocked by Darktrace RESPOND (Figure 7). 

Figure 6: VirusTotal showing the unusualness of one of these external IPs [10]
Figure 7: Log data showing the action taken by Darktrace RESPOND in response to the device breaching the “Crypto Currency Mining Activity” model. This screenshot displays the UI from Darktrace version 5.1

The final activity seen from this device involved the download of additional shell scripts over HTTP associated with Kinsing, namely spre.sh and unk.sh, from 194.38.20[.]199 and 195.3.146[.]118 respectively (Figure 8). A new user agent (Wget/1.19.5 (linux-gnu)) was used when connecting to the latter endpoint, which also began concurrently initiating repeated connections indicative of C2 beaconing. These scripts help to spread the Kinsing malware laterally within the environment and may have been the attacker's last ditch efforts at furthering their compromise before Darktrace RESPOND blocked all connections from the infected Confluence server [11]. With Darktrace RESPOND's successful actions, the customer’s security team were then able to perform their own response and remediation. 

Figure 8: Cyber AI Analyst revealing the last ditch efforts made by the threat actor to download further malicious software. This screenshot displays the UI from Darktrace version 5.1

Darktrace Coverage: N- vs Zero-days

In the SonicWall case the attacker was unable to achieve their actions on objectives (thanks to Darktrace's intervention). However, this incident displayed tactics of a more stealthy and sophisticated attacker - they had an exploited machine but waited for the right moment to execute their malicious code and initiate a full compromise. Due to the lack of visibility over attacker motive, it is difficult to deduce what type of actor led to this intrusion. However, with the disclosure of a zero-day vulnerability (CVE-2021-20016) not long before this attack, along with a seemingly dormant initially compromised device, it is highly possible that it was carried out by a sophisticated cyber criminal or gang. 

On the other hand, the Confluence case engaged in a slightly more noisy approach; it dropped crypto mining malware on vulnerable devices in the hope that the target’s security team did not maintain visibility over their network or would merely turn a blind eye. The files downloaded and credentials observed alongside the mining activity heavily imply the use of Kinsing malware [11]. Since this vulnerability (CVE-2021-26084) emerged as an n-day attack with likely easily accessible POCs, as well as there being a lack of LotL techniques and the motive being long term monetary gain, it is possible this attack was conducted by a less sophisticated or amateur actor (script-kiddie); one that opportunistically exploits known vulnerabilities in internet-facing devices in order to make a quick profit [12].

Whilst Darktrace RESPOND was enabled in human confirmation mode only during the start of the SonicWall attack, Darktrace’s Cyber AI Analyst still offered invaluable insight into the unusual activity associated with the infected machines during both the Confluence and SonicWall compromises. SOC analysts were able to see these uncharacteristic behaviours and escalate the incident through Darktrace’s PTN and ATE services. Analysts then worked through these tickets with the customers, providing support and guidance and, in the SonicWall case, quickly helping to configure Darktrace RESPOND. In both scenarios, Darktrace RESPOND was able to block abnormal connections and enforce a device’s pattern of life, affording the security team enough time to isolate the infected machines and prevent further threats such as ransomware detonation or data exfiltration. 

Concluding thoughts and dangers of third-party integrations 

Organizations with internet-facing devices will inevitably suffer opportunistic zero-day and n-day attacks. While little can be done to remove the risk of zero-days entirely, ensuring that organizations keep their systems up to date will at the very least help prevent opportunistic and script-kiddies from exploiting n-day vulnerabilities.  

However, it is often not always possible for organizations to keep their systems up to date, especially for those who require continuous availability. This may also pose issues for organizations that rely on, and put their trust in, third party integrations such as those explored in this blog (Confluence and SonicWall), as enforcing secure software is almost entirely out of their hands. Moreover, with the rising prevalence of remote working, it is essential now more than ever that organizations ensure their VPN devices are shielded from external threats, guidance on which has been released by the NSA/CISA [13].

These two case studies have shown that whilst organizations can configure their networks and firewalls to help identify known indicators of compromise (IoC), this ‘rearview mirror’ approach will not account for, or protect against, any new and undisclosed IoCs. With the aid of Self-Learning AI and anomaly detection, Darktrace can detect the slightest deviation from a device’s normal pattern of life and respond autonomously without the need for rules and signatures. This allows for the disruption and prevention of known and novel attacks before irreparable damage is caused- reassuring security teams that their digital estates are secure. 

Thanks to Paul Jennings for his contributions to this blog.

Appendices: SonicWall (Zero-day)

Darktrace model detections

·      AIA / Suspicious Chain of Administrative Credentials

·      Anomalous Connection / Active Remote Desktop Tunnel

·      Anomalous Connection / SMB Enumeration

·      Anomalous Connection / Unusual Internal Remote Desktop

·      Compliance / High Priority Compliance Model Breach

·      Compliance / Outgoing NTLM Request from DC

·      Device / Anomalous RDP Followed By Multiple Model Breaches

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / ICMP Address Scan

·      Device / Large Number of Model Breaches

·      Device / Large Number of Model Breaches from Critical Network Device

·      Device / Multiple Lateral Movement Model Breaches (PTN/Enhanced Monitoring model)

·      Device / Network Scan

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / RDP Scan

·      Device / Reverse DNS Sweep

·      Device / SMB Session Bruteforce

·      Device / Suspicious Network Scan Activity (PTN/Enhanced Monitoring model)

·      Unusual Activity / Possible RPC Recon Activity

Darktrace RESPOND (Antigena) actions (as displayed in example)

·      Antigena / Network / Manual / Quarantine Device

MITRE ATT&CK Techniques Observed
IoCs

Appendices: Confluence (N-day)

Darktrace model detections

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Script from Rare Location

·      Compliance / Crypto Currency Mining Activity

·      Compromise / High Priority Crypto Currency Mining (PTN/Enhanced Monitoring model)

·      Device / Initial Breach Chain Compromise (PTN/Enhanced Monitoring model)

·      Device / Internet Facing Device with High Priority Alert

·      Device / New User Agent

Darktrace RESPOND (Antigena) actions (displayed in example)

·      Antigena / Network / Compliance / Antigena Crypto Currency Mining Block

·      Antigena / Network / External Threat / Antigena File then New Outbound Block

·      Antigena / Network / External Threat / Antigena Suspicious Activity Block

·      Antigena / Network / External Threat / Antigena Suspicious File Block

·      Antigena / Network / Significant Anomaly / Antigena Block Enhanced Monitoring

MITRE ATT&CK Techniques Observed
IOCs

References:

[1] https://securitybrief.asia/story/why-preventing-zero-day-attacks-is-crucial-for-businesses

[2] https://electricenergyonline.com/energy/magazine/1150/article/Security-Sessions-More-Dangerous-Than-Zero-Days-The-N-Day-Threat.htm

[3] https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

[4] https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=SonicWall+2021 

[5] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016

[6] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26084

[7] https://www.zdnet.com/article/us-cybercom-says-mass-exploitation-of-atlassian-confluence-vulnerability-ongoing-and-expected-to-accelerate/

[8] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26134

[9] https://attack.mitre.org/software/S0599/

[10] https://www.virustotal.com/gui/ip-address/195.19.192.28/detection 

[11] https://sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/

[12] https://github.com/alt3kx/CVE-2021-26084_PoC

[13] https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/2791320/nsa-cisa-release-guidance-on-selecting-and-hardening-remote-access-vpns/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst

More in this series

No items found.

Blog

/

Cloud

/

August 7, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

cloud security investigation guy on computer doing workDefault blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

Network

/

August 6, 2025

2025 Cyber Threat Landscape: Darktrace’s Mid-Year Review

cyberseucity 2025 half year threat report Default blog imageDefault blog image

2025: Threat landscape in review

The following is a retrospective of the first six months of 2025, highlighting key findings across the threat landscape impacting Darktrace customers.

Darktrace observed a wide range of tactics during this period, used by various types of threat actors including advanced persistent threats (APTs), Malware-as-a-Service (MaaS) and Ransomware-as-a-Service (RaaS) groups.

Methodology

Darktrace’s Analyst team conduct investigations and research into threats facing organizations and security teams across our customer base.  This includes direct investigations with our 24/7 Security Operations Centre (SOC), via services such as Managed Detection and Response (MDR) and Managed Threat Detection, as well as broader cross-fleet research through our Threat Research function.

At the core of our research is Darktrace’s anomaly-based detection, which the Analyst team contextualizes and analyzes to provide additional support to customers and deepen our understanding of the threats they face.

Threat actors are incorporating AI into offensive operations

Threat actors are continuously evolving their tactics, techniques, and procedures (TTPs), posing an ongoing challenge to effective defense hardening. Increasingly, many threat actors are adopting AI, particularly large language models (LLMs), into their operations to enhance the scale, sophistication, and efficacy of their attacks.

The evolving functionality of malware, such as the recently reported LameHug malware by CERT-UA, which uses an open-source LLM, exemplifies this observation [1].

Threat landscape trends in 2025

Threat actors applying AI to Email attacks

LLMs present a clear opportunity for attackers to take advantage of AI and create effective phishing emails at speed. While Darktrace cannot definitively confirm the use of AI to create the phishing emails observed across the customer base, the high volume of phishing emails and notable shifts in tactic could potentially be explained by threat actors adopting new tooling such as LLMs.

  • The total number of malicious emails detected by Darktrace from January to May 2025 was over 12.6 million
  • VIP users continue to face significant threat, with over 25% of all phishing emails targeting these users in the first five months of 2025
  • QR code-based phishing emails have remained a consistent tactic, with a similar proportion observed in January-May 2024 and 2025. The highest numbers were observed in February 2025, with over 1 million detected in that month alone.
  • Shifts towards increased sophistication within phishing emails are emerging, with a year-on-year increase in the proportion of phishing emails containing either a high text volume or multistage payloads. In the first five months of 2025, 32% of phishing emails contained a high volume of text.

The increase in proportion of phishing emails with a high volume of text in particular could point towards threat actors leveraging LLMs to create phishing emails with large, but believable, text in an easy and efficient way.

The above email statistics are derived from analysis of monitored Darktrace / EMAIL model data for all customer deployments hosted in the cloud between January 1 and May 31, 2025.

Campaign Spotlight: Simple, Quick - ClickFix

An interesting technique Darktrace observed multiple times throughout March and April was ClickFix social engineering, which exploits the intersection between humans and technology to trick users into executing malicious code on behalf of the attacker.

  • While this technique has been around since 2024, Darktrace observed campaign activity in the first half of 2025 suggesting a resurgence.  
  • A range of threat actors – from APTs to MaaS and RaaS have adopted this technique to deliver secondary payloads, like information stealing malware.
  • Attackers use fraudulent or compromised legitimate websites to inject malicious plugins that masquerade as fake CAPTCHAs.
  • Targeted users believe they are completing human verification or resolving a website issue, unaware that they are being guided through a series of simple steps to execute PowerShell code on their system.
  • Darktrace observed campaign activity during the first half of 2025 across a range of sectors, including Government, Healthcare, Insurance, Retail and, Non-profit.

Not just AI: Automation is enabling Ransomware and SaaS exploitation

The rise of phishing kits like FlowerStorm and Mamba2FA, which enable phishing and abuse users’ trust by mimicking legitimate services to bypass multi-factor authentication (MFA), highlight how the barriers to entry for sophisticated attacks continue to fall, enabling new threat actors. Combined with Software-as-a-Service (SaaS) account compromise, these techniques make up a substantial portion of cybercriminal activity observed by Darktrace so far this year.

Credentials remain the weak link

A key theme across multiple cases of ransomware was threat actors abusing compromised credentials to gain initial entry into networks via:

  • Unauthorized access to internet-facing technology such as RDP servers and virtual private networks (VPNs).
  • Unauthorized access to SaaS accounts.

SaaS targeted ransomware is on the rise

The encryption of files within SaaS environments observed by Darktrace demonstrates a continued trend of ransomware actors targeting these platforms over traditional networks, potentially driven by a higher return on investment.

SaaS accounts are often less protected than traditional systems because of Single Sign-On (SSO).  Additionally, platforms like Salesforce often host sensitive data, including emails, financial records, customer information, and network configuration details. This stresses the need for robust identity management practices and continuous monitoring.

RaaS is adding complexity and speed to cyber attacks

RaaS has dominated the attack landscape, with groups like Qilin, RansomHub, and Lynx all appearing multiple times in cases across Darktrace’s customer base over the past six months. Detecting ransomware attacks before the encryption stage remains a significant challenge, particularly in RaaS operations where different affiliates often use varying techniques for initial entry and earlier stages of the attack. Darktrace’s recent analysis of Scattered Spider underscores the challenge of hardening defenses against such varying techniques.

CVE exploitation continues despite available patches

Darktrace has also observed ransomware gangs exploiting known Common Vulnerabilities and Exposures (CVEs), including the Medusa ransomware group’s use of the SimpleHelp vulnerabilities: CVE-2024-57727 and CVE-2024-57728 in March, despite patches being made available in January [2].

Misused tools + delayed patches = growing cyber risk

The exploitation of common remote management tools like SimpleHelp highlights the serious challenges defenders face when patch management cycles are suboptimal. As threat actors continue to abuse legitimate services for malicious purposes, the challenges facing defenders will only grow more complex.

Edge exploitation

It comes as no surprise that exploitation of internet-facing devices continued to feature prominently in Darktrace’s Threat Research investigations during the first half of 2025.

Observed CVE exploitation included:

Many of Darktrace’s observations of CVE exploitation so far in 2025 align with wider industry reporting, which suggests that Chinese-nexus threat actors were deemed to likely have exploited these technologies prior to public disclosure. In the case of CVE-2025-0994 - a vulnerability affecting Trimble Cityworks, an asset management system designed for use by local governments, utilities, airports, and public work agencies [3].

Darktrace observed signs of exploitation as early as January 19, well before vulnerability’s public disclosure on February 6 [4]. Darktrace’s early identification of the exploitation stemmed from the detection of a suspicious file download from 192.210.239[.]172:3219/z44.exe - later linked to Chinese-speaking threat actors in a campaign targeting the US government [5].

This case demonstrates the risks posed by the exploitation of internet-facing devices, not only those hosting more common technologies, but also software associated specifically tied to Critical National Infrastructure (CNI); a lucrative target for threat actors. This also highlights Darktrace’s ability to detect exploitation of internet-facing systems, even without a publicly disclosed CVE. Further examples of how Darktrace’s anomaly detection can uncover malicious activity ahead of public vulnerability disclosures can be found here.

New threats and returning adversaries

In the first half of 2025, Darktrace observed a wide range of threats, from sophisticated techniques employed by APT groups to large-scale campaigns involving phishing and information stealers.

BlindEagle (APT-C-36)

Among the observed APT activity, BlindEagle (APT-C-36) was seen targeting customers in Latin America (LATM), first identified in February, with additional cases seen as recently as June.

Darktrace also observed a customer targeted in a China-linked campaign involving the LapDogs ORB network, with activity spanning from December 2024 and June 2025. These likely nation-state attacks illustrate the continued adoption of cyber and AI capabilities into the national security goals of certain countries.

Sophisticated malware functionality

Further sophistication has been observed within specific malware functionality - such as the malicious backdoor Auto-Color, which has now been found to employ suppression tactics to cover its tracks if it is unable to complete its kill chain - highlighting the potential for advanced techniques across every layer of an attack.

Familiar foes

Alongside new and emerging threats, previously observed and less sophisticated tools, such as worms, Remote Access Trojans (RATs), and information stealers, continue to impact Darktrace customers.

The Raspberry Robin worm... First seen in 2021, has been repeatedly identified within Darktrace’s customer base since 2022. Most recently, Darktrace’s Threat Research team identified cases in April and May this year. Recent open-source intelligence (OSINT) reporting suggests that Raspberry Robin continues to evolve its role as an Initial Access Broker (IAB), paving the way for various attacks and remaining a concern [6].

RATs also remain a threat, with examples like AsyncRAT and Gh0st RAT impacting Darktrace customers.

In April multiple cases of MaaS were observed in Darktrace’s customer base, with information stealers Amadey and Stealc, as well as GhostSocks being distributed as a follow up payload after an initial Amadey infection.

Conclusion

As cyber threats evolve, attackers are increasingly harnessing AI to craft highly convincing email attacks, automating phishing campaigns at unprecedented scale and speed. This, coupled with rapid exploitation of vulnerabilities and the growing sophistication of ransomware gangs operating as organized crime syndicates, makes today’s threat landscape more dynamic and dangerous than ever. Cyber defenders collaborate to combat these threats – the coordinated takedown of Lumma Stealer in May was a notable win for both industry and law-enforcement [7], however OSINT suggests that this threat persists [8], and new threats will continue to arise.

Traditional security tools that rely on static rules or signature-based detection often struggle to keep pace with these fast-moving, adaptive threats. In this environment, anomaly-based detection tools are no longer optional—they are essential. By identifying deviations in normal user and system behavior, tools like Darktrace provide a proactive layer of defense capable of detecting novel and emerging threats, even those that bypass conventional security measures. Investing in anomaly-based detection is critical to staying ahead of attackers who now operate with automation, intelligence, and global coordination.

Credit to Emma Foulger (Global Threat Research Operations Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),  Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nahisha Nobregas (Senior Cyber Analyst), Nicole Wong (Principal Cyber Analyst), Justin Torres (Senior Cyber Analyst), Matthew John (Director of Operations, SOC), Sam Lister (Specialist Security Researcher), Ryan Traill (Analyst Content Lead) and the Darktrace Incident Management team.

The information contained in this blog post is provided for general informational purposes only and represents the views and analysis of Darktrace as of the date of publication. While efforts have been made to ensure the accuracy and timeliness of the information, the cybersecurity landscape is dynamic, and new threats or vulnerabilities may have emerged since this report was compiled.

This content is provided “as is” and without warranties of any kind, either express or implied. Darktrace makes no representations or warranties regarding the completeness, accuracy, reliability, or suitability of the information, and expressly disclaims all warranties.

Nothing in this blog post should be interpreted as legal, technical, or professional advice. Users of this information assume full responsibility for any actions taken based on its content, and Darktrace shall not be liable for any loss or damage resulting from reliance on this material. Reference to any specific products, companies, or services does not constitute or imply endorsement, recommendation, or affiliation.

Appendices

Indicators of Compromise (IoCs)

IoC - Type - Description + Probability

LapDogs ORB network, December 2024-June 2025

www.northumbra[.]com – Hostname – Command and Control (C2) server

103.131.189[.]2 – IP Address - C2 server, observed December 2024 & June 2025

103.106.230[.]31 – IP Address - C2 server, observed December 2024

154.223.20[.]56 – IP Address – Possible C2 server, observed December 2024

38.60.214[.]23 – IP Address – Possible C2 server, observed January & February 2025

154.223.20[.]58:1346/systemd-log – URL – Possible ShortLeash payload, observed December 2024

CN=ROOT,OU=Police department,O=LAPD,L=LA,ST=California,C=US - TLS certificate details for C2 server

CVE-2025-0994, Trimble Cityworks exploitation, January 2025

192.210.239[.]172:3219/z44.exe – URL - Likely malicious file download

AsyncRAT, February-March 2025

windows-cam.casacam[.]net – Hostname – Likely C2 server

88.209.248[.]141 – IP Address – Likely C2 server

207.231.105[.]51 – IP Address – Likely C2 server

163.172.125[.]253 – IP Address – Likely C2 server

microsoft-download.ddnsfree[.]com – Hostname – Likely C2 server

95.217.34[.]113 – IP Address – Likely C2 server

vpnl[.]net – Hostname – Likely C2 server

157.20.182[.]16 – IP Address - Likely C2 server

185.81.157[.]19 – IP Address – Likely C2 server

dynamic.serveftp[.]net – IP Address – Likely C2 server

158.220.96.15 – IP Address – Likely C2 server

CVE-2024-57727 & CVE-2024-57728, SimpleHelp RMM exploitation, March 2025

213.183.63[.]41 – IP Address - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-version.txt?time=3512082867 – URL - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-00000000002-archive.p2.l2 – URL - C2 server

pruebas.pintacuario[.]mx – Hostname – Possible C2 server

144.217.181[.]205 – IP Address – Likely C2 server

erp.ranasons[.]com – Hostname – Possible destination for exfiltration

143.110.243[.]154 – IP Address – Likely destination for exfiltration

Blind Eagle, April-June 2025

sostenermio2024.duckdns[.]org/31agosto.vbs – URL – Possible malicious file download

Stealc, April 2025

88.214.48[.]93/ea2cb15d61cc476f[.]php – URL – C2 server

Amadey & GhostSocks, April 2025

195.82.147[.]98 – IP Address - Amadey C2 server

195.82.147[.]98/0Bdh3sQpbD/index.php – IP Address – Likely Amadey C2 activity

194.28.226.181 – IP Address – Likely GhostSocks C2 server

RaspberryRobin, May 2025

4j[.]pm – Hostname – C2 server

4xq[.]nl – Hostname – C2 server

8t[.]wf – Hostname – C2 server

Gh0stRAT, May 2025

lu.dssiss[.]icu  - Hostname – Likely C2 server

192.238.133[.]162:7744/1-111.exe – URL – Possible addition payload

8e9dec3b028f2406a8c546a9e9ea3d50609c36bb - SHA1 - Possible additional payload

f891c920f81bab4efbaaa1f7a850d484 - MD5 – Possible additional payload

192.238.133[.]162:7744/c3p.exe – URL - Possible additional payload

03287a15bfd67ff8c3340c0bae425ecaa37a929f - SHA1 - Possible additional payload

02aa02aee2a6bd93a4a8f4941a0e6310 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-1111.exe – URL - Possible additional payload

1473292e1405882b394de5a5857f0b6fa3858fd1 - SHA1 - Possible additional payload

69549862b2d357e1de5bab899ec0c817 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-25.exe – URL -  Possible additional payload

20189164c4cd5cac7eb76ba31d0bd8936761d7a7  - SHA1 - Possible additional payload

f42aa5e68b28a3f335f5ea8b6c60cb57 – MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe – URL - Possible additional payload

fea1e30dfafbe9fa9abbbdefbcbe245b6b0628ad - SHA1 - Possible additional payload

5ea622c630ef2fd677868cbe8523a3d5 - MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe - URL - Possible additional payload

aa5a5d2bd610ccf23e58bcb17d6856d7566d71b9  - SHA1 - Possible additional payload

9d33029eaeac1c2d05cf47eebb93a1d0 - MD5 - Possible additional payload

References and further reading

1.        https://cip.gov.ua/en/news/art28-atakuye-sektor-bezpeki-ta-oboroni-za-dopomogoyu-programnogo-zasobu-sho-vikoristovuye-shtuchnii-intelekt?utm_medium=email&_hsmi=113619842&utm_content=113619842&utm_source=hs_email

2.        https://www.s-rminform.com/latest-thinking/cyber-threat-advisory-medusa-and-the-simplehelp-vulnerability

3.        https://assetlifecycle.trimble.com/en/products/software/cityworks

4.     https://nvd.nist.gov/vuln/detail/CVE-2025-0994

5.     https://blog.talosintelligence.com/uat-6382-exploits-cityworks-vulnerability/

6.        https://www.silentpush.com/blog/raspberry-robin/

7.        https://blogs.microsoft.com/on-the-issues/2025/05/21/microsoft-leads-global-action-against-favored-cybercrime-tool/

8.     https://www.trendmicro.com/en_sg/research/25/g/lumma-stealer-returns.html

Related Darktrace investigations

-              ClickFix

-              FlowerStorm

-              Mamba 2FA

-              Qilin Ransomware

-              RansomHub Ransomware

-              RansomHub Revisited

-              Lynx Ransomware

-              Scattered Spider

-              Medusa Ransomware

-              Legitimate Services Malicious Intentions

-              CVE-2025-0282 and CVE-2025-0283 – Ivanti CS, PS and ZTA

-              CVE-2025-31324 – SAP Netweaver

-              Pre-CVE Threat Detection

-              BlindEagle (APT-C-36)

-              Raspberry Robin Worm

-              AsyncRAT

-              Amadey

-              Lumma Stealer

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI