Introducing the AI Maturity Model for Cybersecurity
The AI Maturity Model for Cybersecurity is the most detailed guide of its kind, grounded in real use cases and expert insight. It empowers CISOs to make strategic decisions, not just about what AI to adopt, but how to do it in a way that strengthens their organization over time and achieves successful outcomes.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ashanka Iddya
Senior Director, Product Marketing
Share
16
Jul 2025
AI adoption in cybersecurity: Beyond the hype
Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.
To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.
There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.
In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.
That’s why we created the AI Security Maturity Model, a strategic framework that:
Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
Applies across core functions such as risk management, threat detection, alert triage, and incident response
Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations
[related-resource]
How is maturity assessed in this model?
The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.
This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.
Why Darktrace?
AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it.
We've learned that modern businesses operate within a vast, interconnected ecosystem which introduces new complexities and vulnerabilities that make traditional cybersecurity approaches unsustainable. While many vendors use machine learning, not all AI tools are the same, and not all are created equal.
Darktrace’s Self-Learning AI uses a multi-layered AI approach, learning your unique organization to deliver proactive and resilient defense against today’s sophisticated threats. By strategically integrating a diverse set of AI techniques, such as machine learning, deep learning, LLMs, and natural language processing, both sequentially and hierarchically, our multi-layered AI approach provides a robust defense mechanism that is unique to your organization and adapts to the evolving threat landscape.
This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools.
Security teams today are asking big, important questions:
What should we actually use AI for?
How are other teams using it — and what’s working?
What are vendors offering, and what’s just hype?
Will AI ever replace people in the SOC?
These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.
The structure: From experimentation to autonomy
The model outlines five levels of maturity :
L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.
L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.
L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.
L3 – AI Collaboration: Specialized cybersecurity AI agent systems with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.
L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.
Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.
Strategic benefits for security leaders
The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:
SOC fatigue is real, and AI can help
Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective
GenAI is error prone, requiring strong human oversight
While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.
AI’s real value lies in progression
The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.
Trust and oversight are key initially but evolves in later levels
Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.
People’s roles shift meaningfully
As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.
Outcome, not hype, defines maturity
AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.
[related-resource]
Outcomes across the AI Security Maturity Model
The Security Organization experiences an evolutionof cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.
L0 – Manual Operations
At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.
L1 – Automation Rules
At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.
L2 – AI Assistance
At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.
L3 – AI Collaboration
At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.
L4 – AI Delegation
At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks
Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.
Join the webinar
Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.
Find your place in the AI maturity model
Get the self-guided assessment designed to help you benchmark your current maturity level, identify key gaps, and prioritize next steps.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace
This civil engineering company maintains much of the highway infrastructure across the UK. After legacy tools failed to stop advanced email threats, the company adopted Darktrace’s AI, which autonomously detected and neutralized attacks—proving its value and driving broader deployment.
One-Person Security Team, Enterprise-Wide Protection: A Utility Company’s Darktrace Success Story
Discover how a private utility management company experienced measurable network and email security improvements with Darktrace, saving 264 analyst hours on investigations in less than a month.
Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors
As AI reshapes the cybersecurity landscape, Darktrace’s Cyber AI Analyst automates early-stage investigations, mimicking human reasoning to detect and respond to threats at machine speed. This blog explores four real-world cases where it identified sophisticated threat actors, including nation-state adversaries.
How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace
Asking more of the information security team
“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.
“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”
Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.
Legacy tools were not meeting the team’s desired speed or accuracy
The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.
Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.
Choosing Darktrace
“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.
The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.
Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.
On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.
Saving time with Darktrace / EMAIL
Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .
Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.
Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.
Further savings with Darktrace / NETWORK and Darktrace / IDENTITY
Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.
These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.
An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.
Detection of novel threats provides reassurance
Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.
“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”
Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.
Looking to the future
With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.
“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”
As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.
Inside Akira’s SonicWall Campaign: Darktrace’s Detection and Response
Introduction: Background on Akira SonicWall campaign
Between July and August 2025, security teams worldwide observed a surge in Akira ransomware incidents involving SonicWall SSL VPN devices [1]. Initially believed to be the result of an unknown zero-day vulnerability, SonicWall later released an advisory announcing that the activity was strongly linked to a previously disclosed vulnerability, CVE-2024-40766, first identified over a year earlier [2].
On August 20, 2025, Darktrace observed unusual activity on the network of a customer in the US. Darktrace detected a range of suspicious activity, including network scanning and reconnaissance, lateral movement, privilege escalation, and data exfiltration. One of the compromised devices was later identified as a SonicWall virtual private network (VPN) server, suggesting that the incident was part of the broader Akira ransomware campaign targeting SonicWall technology.
As the customer was subscribed to the Managed Detection and Response (MDR) service, Darktrace’s Security Operations Centre (SOC) team was able to rapidly triage critical alerts, restrict the activity of affected devices, and notify the customer of the threat. As a result, the impact of the attack was limited - approximately 2 GiB of data had been observed leaving the network, but any further escalation of malicious activity was stopped.
Threat Overview
CVE-2024-40766 and other misconfigurations
CVE-2024-40766 is an improper access control vulnerability in SonicWall’s SonicOS, affecting Gen 5, Gen 6, and Gen 7 devices running SonicOS version 7.0.1 5035 and earlier [3]. The vulnerability was disclosed on August 23, 2024, with a patch released the same day. Shortly after, it was reported to be exploited in the wild by Akira ransomware affiliates and others [4].
Almost a year later, the same vulnerability is being actively targeted again by the Akira ransomware group. In addition to exploiting unpatched devices affected by CVE-2024-40766, security researchers have identified three other risks potentially being leveraged by the group [5]:
*The Virtual Office Portal can be used to initially set up MFA/TOTP configurations for SSLVPN users.
Thus, even if SonicWall devices were patched, threat actors could still target them for initial access by reusing previously stolen credentials and exploiting other misconfigurations.
Akira Ransomware
Akira ransomware was first observed in the wild in March 2023 and has since become one of the most prolific ransomware strains across the threat landscape [6]. The group operates under a Ransomware-as-a-Service (RaaS) model and frequently uses double extortion tactics, pressuring victims to pay not only to decrypt files but also to prevent the public release of sensitive exfiltrated data.
The ransomware initially targeted Windows systems, but a Linux variant was later observed targeting VMware ESXi virtual machines [7]. In 2024, it was assessed that Akira would continue to target ESXi hypervisors, making attacks highly disruptive due to the central role of virtualisation in large-scale cloud deployments. Encrypting the ESXi file system enables rapid and widespread encryption with minimal lateral movement or credential theft. The lack of comprehensive security protections on many ESXi hypervisors also makes them an attractive target for ransomware operators [8].
Victimology
Akira is known to target organizations across multiple sectors, most notably those in manufacturing, education, and healthcare. These targets span multiple geographic regions, including North America, Latin America, Europe and Asia-Pacific [9].
Figure 1: Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].
Common Tactics, Techniques and Procedures (TTPs) [7][10]
Initial Access Targets remote access services such as RDP and VPN through vulnerability exploitation or stolen credentials.
Reconnaissance Uses network scanning tools like SoftPerfect and Advanced IP Scanner to map the environment and identify targets.
Lateral Movement Moves laterally using legitimate administrative tools, typically via RDP.
Persistence Employs techniques such as Kerberoasting and pass-the-hash, and tools like Mimikatz to extract credentials. Known to create new domain accounts to maintain access.
Command and Control Utilizes remote access tools including AnyDesk, RustDesk, Ngrok, and Cloudflare Tunnel.
Exfiltration Uses tools such as FileZilla, WinRAR, WinSCP, and Rclone. Data is exfiltrated via protocols like FTP and SFTP, or through cloud storage services such as Mega.
Darktrace’s Coverage of Akira ransomware
Reconnaissance
Darktrace first detected of unusual network activity around 05:10 UTC, when a desktop device was observed performing a network scan and making an unusual number of DCE-RPC requests to the endpoint mapper (epmapper) service. Network scans are typically used to identify open ports, while querying the epmapper service can reveal exposed RPC services on the network.
Multiple other devices were also later seen with similar reconnaissance activity, and use of the Advanced IP Scanner tool, indicated by connections to the domain advanced-ip-scanner[.]com.
Lateral movement
Shortly after the initial reconnaissance, the same desktop device exhibited unusual use of administrative tools. Darktrace observed the user agent “Ruby WinRM Client” and the URI “/wsman” as the device initiated a rare outbound Windows Remote Management (WinRM) connection to two domain controllers (REDACTED-dc1 and REDACTED-dc2). WinRM is a Microsoft service that uses the WS-Management (WSMan) protocol to enable remote management and control of network devices.
Darktrace also observed the desktop device connecting to an ESXi device (REDACTED-esxi1) via RDP using an LDAP service credential, likely with administrative privileges.
Credential access
At around 06:26 UTC, the desktop device was seen fetching an Active Directory certificate from the domain controller (REDACTED-dc1) by making a DCE-RPC request to the ICertPassage service. Shortly after, the device made a Kerberos login using the administrative credential.
Figure 3: Darktrace’s detection of the of anomalous certificate download and subsequent Kerberos login.
Further investigation into the device’s event logs revealed a chain of connections that Darktrace’s researchers believe demonstrates a credential access technique known as “UnPAC the hash.”
This method begins with pre-authentication using Kerberos’ Public Key Cryptography for Initial Authentication (PKINIT), allowing the client to use an X.509 certificate to obtain a Ticket Granting Ticket (TGT) from the Key Distribution Center (KDC) instead of a password.
The next stage involves User-to-User (U2U) authentication when requesting a Service Ticket (ST) from the KDC. Within Darktrace's visibility of this traffic, U2U was indicated by the client and service principal names within the ST request being identical. Because PKINIT was used earlier, the returned ST contains the NTLM hash of the credential, which can then be extracted and abused for lateral movement or privilege escalation [11].
Figure 4: Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12]
Figure 5: Device event log showing the Kerberos Login and Kerberos Ticket events
Analysis of the desktop device’s event logs revealed a repeated sequence of suspicious activity across multiple credentials. Each sequence included a DCE-RPC ICertPassage request to download a certificate, followed by a Kerberos login event indicating PKINIT pre-authentication, and then a Kerberos ticket event consistent with User-to-User (U2U) authentication.
Darktrace identified this pattern as highly unusual. Cyber AI Analyst determined that the device used at least 15 different credentials for Kerberos logins over the course of the attack.
By compromising multiple credentials, the threat actor likely aimed to escalate privileges and facilitate further malicious activity, including lateral movement. One of the credentials obtained via the “UnPAC the hash” technique was later observed being used in an RDP session to the domain controller (REDACTED-dc2).
C2 / Additional tooling
At 06:44 UTC, the domain controller (REDACTED-dc2) was observed initiating a connection to temp[.]sh, a temporary cloud hosting service. Open-source intelligence (OSINT) reporting indicates that this service is commonly used by threat actors to host and distribute malicious payloads, including ransomware [13].
Shortly afterward, the ESXi device was observed downloading an executable named “vmwaretools” from the rare external endpoint 137.184.243[.]69, using the user agent “Wget.” The repeated outbound connections to this IP suggest potential command-and-control (C2) activity.
Figure 6: Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Figure 7: Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.
Data exfiltration
The first signs of data exfiltration were observed at around 7:00 UTC. Both the domain controller (REDACTED-dc2) and a likely SonicWall VPN device were seen uploading approximately 2 GB of data via SSH to the rare external endpoint 66.165.243[.]39 (AS29802 HVC-AS). OSINT sources have since identified this IP as an indicator of compromise (IoC) associated with the Akira ransomware group, known to use it for data exfiltration [14].
Figure 8: Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.
Cyber AI Analyst
Throughout the course of the attack, Darktrace’s Cyber AI Analyst autonomously investigated the anomalous activity as it unfolded and correlated related events into a single, cohesive incident. Rather than treating each alert as isolated, Cyber AI Analyst linked them together to reveal the broader narrative of compromise. This holistic view enabled the customer to understand the full scope of the attack, including all associated activities and affected assets that might otherwise have been dismissed as unrelated.
Figure 9: Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.
Containing the attack
In response to the multiple anomalous activities observed across the network, Darktrace's Autonomous Response initiated targeted mitigation actions to contain the attack. These included:
Blocking connections to known malicious or rare external endpoints, such as 137.184.243[.]69, 66.165.243[.]39, and advanced-ip-scanner[.]com.
Blocking internal traffic to sensitive ports, including 88 (Kerberos), 3389 (RDP), and 49339 (DCE-RPC), to disrupt lateral movement and credential abuse.
Enforcing a block on all outgoing connections from affected devices to contain potential data exfiltration and C2 activity.
Figure 10: Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.
Managed Detection and Response
As this customer was an MDR subscriber, multiple Enhanced Monitoring alerts—high-fidelity models designed to detect activity indicative of compromise—were triggered across the network. These alerts prompted immediate investigation by Darktrace’s SOC team.
Upon determining that the activity was likely linked to an Akira ransomware attack, Darktrace analysts swiftly acted to contain the threat. At around 08:05 UTC, devices suspected of being compromised were quarantined, and the customer was promptly notified, enabling them to begin their own remediation procedures without delay.
A wider campaign?
Darktrace’s SOC and Threat Research teams identified at least three additional incidents likely linked to the same campaign. All targeted organizations were based in the US, spanning various industries, and each have indications of using SonicWall VPN, indicating it had likely been targeted for initial access.
Across these incidents, similar patterns emerged. In each case, a suspicious executable named “vmwaretools” was downloaded from the endpoint 85.239.52[.]96 using the user agent “Wget”, bearing some resemblance to the file downloads seen in the incident described here. Data exfiltration was also observed via SSH to the endpoints 107.155.69[.]42 and 107.155.93[.]154, both of which belong to the same ASN also seen in the incident described in this blog: S29802 HVC-AS. Notably, 107.155.93[.]154 has been reported in OSINT as an indicator associated with Akira ransomware activity [15]. Further recent Akira ransomware cases have been observed involving SonicWall VPN, where no similar executable file downloads were observed, but SSH exfiltration to the same ASN was. These overlapping and non-overlapping TTPs may reflect the blurring lines between different affiliates operating under the same RaaS.
Lessons from the campaign
This campaign by Akira ransomware actors underscores the critical importance of maintaining up-to-date patching practices. Threat actors continue to exploit previously disclosed vulnerabilities, not just zero-days, highlighting the need for ongoing vigilance even after patches are released. It also demonstrates how misconfigurations and overlooked weaknesses can be leveraged for initial access or privilege escalation, even in otherwise well-maintained environments.
Darktrace’s observations further reveal that ransomware actors are increasingly relying on legitimate administrative tools, such as WinRM, to blend in with normal network activity and evade detection. In addition to previously documented Kerberos-based credential access techniques like Kerberoasting and pass-the-hash, this campaign featured the use of UnPAC the hash to extract NTLM hashes via PKINIT and U2U authentication for lateral movement or privilege escalation.
Credit to Emily Megan Lim (Senior Cyber Analyst), Vivek Rajan (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), and Sam Lister (Specialist Security Researcher)
Appendices
Darktrace Model Detections
Anomalous Connection / Active Remote Desktop Tunnel
Anomalous Connection / Data Sent to Rare Domain
Anomalous Connection / New User Agent to IP Without Hostname
Anomalous Connection / Possible Data Staging and External Upload
Anomalous Connection / Rare WinRM Incoming
Anomalous Connection / Rare WinRM Outgoing
Anomalous Connection / Uncommon 1 GiB Outbound
Anomalous Connection / Unusual Admin RDP Session
Anomalous Connection / Unusual Incoming Long Remote Desktop Session
Anomalous Connection / Unusual Incoming Long SSH Session
Anomalous Connection / Unusual Long SSH Session
Anomalous File / EXE from Rare External Location
Anomalous Server Activity / Anomalous External Activity from Critical Network Device
Anomalous Server Activity / Outgoing from Server
Anomalous Server Activity / Rare External from Server
Compliance / Default Credential Usage
Compliance / High Priority Compliance Model Alert
Compliance / Outgoing NTLM Request from DC
Compliance / SSH to Rare External Destination
Compromise / Large Number of Suspicious Successful Connections
Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
Device / Anomalous Certificate Download Activity
Device / Anomalous SSH Followed By Multiple Model Alerts
Device / Anonymous NTLM Logins
Device / Attack and Recon Tools
Device / ICMP Address Scan
Device / Large Number of Model Alerts
Device / Network Range Scan
Device / Network Scan
Device / New User Agent To Internal Server
Device / Possible SMB/NTLM Brute Force
Device / Possible SMB/NTLM Reconnaissance
Device / RDP Scan
Device / Reverse DNS Sweep
Device / Suspicious SMB Scanning Activity
Device / UDP Enumeration
Unusual Activity / Unusual External Data to New Endpoint
Unusual Activity / Unusual External Data Transfer
User / Multiple Uncommon New Credentials on Device
User / New Admin Credentials on Client
User / New Admin Credentials on Server
Enhanced Monitoring Models
Compromise / Anomalous Certificate Download and Kerberos Login
Device / Initial Attack Chain Activity
Device / Large Number of Model Alerts from Critical Network Device
Device / Multiple Lateral Movement Model Alerts
Device / Suspicious Network Scan Activity
Unusual Activity / Enhanced Unusual External Data Transfer
Antigena/Autonomous Response Models
Antigena / Network / External Threat / Antigena File then New Outbound Block