Blog
/
AI
/
July 30, 2025

Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors

As AI reshapes the cybersecurity landscape, Darktrace’s Cyber AI Analyst automates early-stage investigations, mimicking human reasoning to detect and respond to threats at machine speed. This blog explores four real-world cases where it identified sophisticated threat actors, including nation-state adversaries.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Man looking at computer doing work, cybersecurity, AI, AI analystDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jul 2025

From automation to intelligence

There’s a lot of attention around AI in cybersecurity right now, similar to how important automation felt about 15 years ago. But this time, the scale and speed of change feel different.

In the context of cybersecurity investigations, the application of AI can significantly enhance an organization's ability to detect, respond to, and recover from incidents. It enables a more proactive approach to cybersecurity, ensuring a swift and effective response to potential threats.

At Darktrace, we’ve learned that no single AI technique can solve cybersecurity on its own. We employ a multi-layered AI approach, strategically integrating a diverse set of techniques both sequentially and hierarchically. This layered architecture allows us to deliver proactive, adaptive defense tailored to each organization’s unique environment.

Darktrace uses a range of AI techniques to perform in-depth analysis and investigation of anomalies identified by lower-level alerts, in particular automating Levels 1 and 2 of the Security Operations Centre (SOC) team’s workflow. This saves teams time and resources by automating repetitive and time-consuming tasks carried out during investigation workflows. We call this core capability Cyber AI Analyst.

How Darktrace’s Cyber AITM Analyst works

Cyber AI Analyst mimics the way a human carries out a threat investigation: evaluating multiple hypotheses, analyzing logs for involved assets, and correlating findings across multiple domains. It will then generate an alert with full technical details, pulling relevant findings into a single pane of glass to track the entire attack chain.

Learn more about how Cyber AI Analyst accomplishes this here:

This blog will highlight four examples where Darktrace’s agentic AI, Cyber AI Analyst, successfully identified the activity of sophisticated threat actors, including nation state adversaries. The final example will include step-by-step details of the investigations conducted by Cyber AI Analyst.

[related-resource]

Case 1: Cyber AI Analyst vs. ShadowPad Malware: East Asian Advanced Persistent Threat (APT)

In March 2025, Darktrace detailed a lengthy investigation into two separate threads of likely state-linked intrusion activity in a customer network, showcasing Cyber AI Analyst’s ability to identify different activity threads and piece them together.

The first of these threads...

occurred in July 2024 and involved a malicious actor establishing a foothold in the customer’s virtual private network (VPN) environment, likely via the exploitation of an information disclosure vulnerability (CVE-2024-24919) affecting Check Point Security Gateway devices.

Using compromised service account credentials, the actor then moved laterally across the network via RDP and SMB, with files related to the modular backdoor ShadowPad being delivered to targeted internal systems. Targeted systems went on to communicate with a C2 server via both HTTPS connections and DNS tunnelling.

The second thread of activity...

Which occurred several months earlier in October 2024, involved a malicious actor infiltrating the customer's desktop environment via SMB and WMI.

The actor used these compromised desktops to discriminately collect sensitive data from a network share before exfiltrating such data to a web of likely compromised websites.

For each of these threads of activity, Cyber AI Analyst was able to identify and piece together the relevant intrusion steps by hypothesizing, analyzing, and then generating a singular view of the full attack chain.

Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Figure 1: Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 2: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

These Cyber AI Analyst investigations enabled a quicker understanding of the threat actor’s sequence of events and, in some cases, led to faster containment.

Read the full detailed blog on Darktrace’s ShadowPad investigation here!

Case 2: Cyber AI Analyst vs. Blind Eagle: South American APT

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombia.

In February 2025, Cyber AI Analyst provided strong coverage of a Blind Eagle intrusion targeting a South America-based public transport provider, identifying and correlating various stages of the attack, including tooling.

Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Figure 3: Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.
Figure 4: Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

In late February 2025, Darktrace observed activity assessed with medium confidence to be associated with Blind Eagle on the network of a customer in Colombia. Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany.

Read the full Blind Eagle threat story here!

Case 3: Cyber AI Analyst vs. Ransomware Gang

In mid-March 2025, a malicious actor gained access to a customer’s network through their VPN. Using the credential 'tfsservice', the actor conducted network reconnaissance, before leveraging the Zerologon vulnerability and the Directory Replication Service to obtain credentials for the high-privilege accounts, ‘_svc_generic’ and ‘administrator’.

The actor then abused these account credentials to pivot over RDP to internal servers, such as DCs. Targeted systems showed signs of using various tools, including the remote monitoring and management (RMM) tool AnyDesk, the proxy tool SystemBC, the data compression tool WinRAR, and the data transfer tool WinSCP.

The actor finally collected and exfiltrated several gigabytes of data to the cloud storage services, MEGA, Backblaze, and LimeWire, before returning to attempt ransomware detonation.

Figure 5: Cyber AI Analyst detailing its full investigation, linking 34 related Incident Events in a single pane of glass.

Cyber AI Analyst identified, analyzed, and reported on all corners of this attack, resulting in a threat tray made up of 34 Incident Events into a singular view of the attack chain.

Cyber AI Analyst identified activity associated with the following tactics across the MITRE attack chain:

  • Initial Access
  • Persistence
  • Privilege Escalation
  • Credential Access
  • Discovery
  • Lateral Movement
  • Execution
  • Command and Control
  • Exfiltration

Case 4: Cyber AI Analyst vs Ransomhub

Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.
Figure 6: Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.

A malicious actor appeared to have entered the customer’s network their VPN, using a likely attacker-controlled device named 'DESKTOP-QIDRDSI'. The actor then pivoted to other systems via RDP and distributed payloads over SMB.

Some systems targeted by the attacker went on to exfiltrate data to the likely ReliableSite Bare Metal server, 104.194.10[.]170, via HTTP POSTs over port 5000. Others executed RansomHub ransomware, as evidenced by their SMB-based distribution of ransom notes named 'README_b2a830.txt' and their addition of the extension '.b2a830' to the names of files in network shares.

Through its live investigation of this attack, Cyber AI Analyst created and reported on 38 Incident Events that formed part of a single, wider incident, providing a full picture of the threat actor’s behavior and tactics, techniques, and procedures (TTPs). It identified activity associated with the following tactics across the MITRE attack chain:

  • Execution
  • Discovery
  • Lateral Movement
  • Collection
  • Command and Control
  • Exfiltration
  • Impact (i.e., encryption)
Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 7: Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 8: Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
 Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace. Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 9: Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 10: Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 11: Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.

Conclusion

Security teams are challenged to keep up with a rapidly evolving cyber-threat landscape, now powered by AI in the hands of attackers, alongside the growing scope and complexity of digital infrastructure across the enterprise.

Traditional security methods, even those that use some simple machine learning, are no longer sufficient, as these tools cannot keep pace with all possible attack vectors or respond quickly enough machine-speed attacks, given their complexity compared to known and expected patterns. Security teams require a step up in their detection capabilities, leveraging machine learning to understand the environment, filter out the noise, and take action where threats are identified. This is where Cyber AI Analyst steps in to help.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Security Researcher), Emma Foulger (Global Threat Research Operations Lead), and Ryan Traill (Analyst Content Lead)

[related-resource]

Learn more about Cyber AI Analyst

Discover how Cyber AI Analyst boosts SOC efficiency with faster threat triage, investigation, and response.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Cloud

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

Network

/

September 23, 2025

ShadowV2: An emerging DDoS for hire botnet

ShadowV2: An emerging DDoS for hire botnet Default blog imageDefault blog image

Introduction: ShadowV2 DDoS

Darktrace's latest investigation uncovered a novel campaign that blends traditional malware with modern devops technology.

At the center of this campaign is a Python-based command-and-control (C2) framework hosted on GitHub CodeSpaces. This campaign also utilizes a Python based spreader with a multi-stage Docker deployment as the initial access vector.

The campaign further makes use of a Go-based Remote Access Trojan (RAT) that implements a RESTful registration and polling mechanism, enabling command execution and communication with its operators.

ShadowV2 attack techniques

What sets this campaign apart is the sophistication of its attack toolkit.

The threat actors employ advanced methods such as HTTP/2 rapid reset, a Cloudflare under attack mode (UAM) bypass, and large-scale HTTP floods, demonstrating a capability to combine distributed denial-of-service (DDoS) techniques with targeted exploitation.

With the inclusion of an OpenAPI specification, implemented with FastAPI and Pydantic and a fully developed login panel and operator interface, the infrastructure seems to resemble a “DDoS-as-a-service” platform rather than a traditional botnet, showing the extent to which modern malware increasingly mirrors legitimate cloud-native applications in both design and usability.

Analysis of a SadowV2 attack

Initial access

The initial compromise originates from a Python script hosted on GitHub CodeSpaces. This can be inferred from the observed headers:

User-Agent: docker-sdk-python/7.1.0

X-Meta-Source-Client: github/codespaces

The user agent shows that the attacker is using the Python Docker SDK, a library for Python programs that allows them to interact with Docker to create containers. The X-Meta-Source-Client appears to have been injected by GitHub into the request to allow for attribution, although there is no documentation online about this header.

The IP the connections originate from is 23.97.62[.]139, which is a Microsoft IP based in Singapore. This aligns with expectations as GitHub is owned by Microsoft.

This campaign targets exposed Docker daemons, specifically those running on AWS EC2. Darktrace runs a number of honeypots across multiple cloud providers and has only observed attacks against honeypots running on AWS EC2. By default, Docker is not accessible to the Internet, however, can be configured to allow external access. This can be useful for managing complex deployments where remote access to the Docker API is needed.

Typically, most campaigns targeting Docker will either take an existing image from Docker Hub and deploy their tools within it, or upload their own pre-prepared image to deploy. This campaign works slightly differently; it first spawns a generic “setup” container and installs a number of tools within it. This container is then imaged and deployed as a live container with the malware arguments passed in via environmental variables.

Attacker creates a blank container from an Ubuntu image.
Figure 1: Attacker creates a blank container from an Ubuntu image.
Attacker sets up their tools for the attack.
Figure 2: Attacker sets up their tools for the attack.
 Attacker deploys a new container using the image from the setup container.
Figure 3: Attacker deploys a new container using the image from the setup container.

It is unclear why the attackers chose this approach - one possibility is that the actor is attempting to avoid inadvertently leaving forensic artifacts by performing the build on the victim machine, rather than building it themselves and uploading it.

Malware analysis

The Docker container acts as a wrapper around a single binary, dropped in /app/deployment. This is an ELF binary written in Go, a popular choice for modern malware. Helpfully, the binary is unstripped, making analysis significantly easier.

The current version of the malware has not been reported by OSINT providers such as VirusTotal. Using the domain name from the MASTER_ADDR variable and other IoCs, we were able to locate two older versions of the malware that were submitted to VirusTotal on the June 25 and July 30 respectively [1] [2].  Neither of these had any detections and were only submitted once each using the web portal from the US and Canada respectively. Darktrace first observed the attack against its honeypot on June 24, so it could be a victim of this campaign submitting the malware to VirusTotal. Due to the proximity of the start of the attacks, it could also be the attacker testing for detections, however it is not possible to know for certain.

The malware begins by phoning home, using the MASTER_ADDR and VPS_NAME identifiers passed in from the Docker run environmental variables. In addition, the malware derives a unique VPS_ID, which is the VPS_NAME concatenated with the current unix timestamp. The VPS_ID is used for all communications with the C2 server as the identifier for the specific implant. If the malware is restarted, or the victim is re-infected, the C2 server will inform the implant of its original VPS_ID to ensure continuity.

Snippet that performs the registration by sending a POST request to the C2 API with a JSON structure.
Figure 4: Snippet that performs the registration by sending a POST request to the C2 API with a JSON structure.

From there, the malware then spawns two main loops that will remain active for the lifetime of the implant. Every second, it sends a heartbeat to the C2 by sending the VPS_ID to hxxps://shadow.aurozacloud[.]xyz/api/vps/heartbeat via POST request. Every 5 seconds, it retrieves hxxps://shadow.aurozacloud[.]xyz/api/vps/poll/<VPS ID> via a GET request to poll for new commands.

The poll mechanism shadow v2
Figure 5: The poll mechanism.

At this stage, Darktrace security researchers wrote a custom client that ran on the server infected by the attacker that mimicked their implant. The goal was to intercept commands from the C2. Based on this, it was observed initiating an attack against chache08[.]werkecdn[.]me using a 120 thread HTTP2 rapid reset attack. This site appears to be hosted on an Amsterdam VPS provided by FDCServers, a server hosting company. It was not possible to identify what normally runs on this site, as it returns a 403 Forbidden error when visited.

Darktrace’s code analysis found that the returned commands contain the following fields:

  • Method (e.g. GET, POST)
  • A unique ID for the attack
  • A URL endpoint used to report attack statistics
  • The target URL & port
  • The duration of the attack
  • The number of threads to use
  • An optional proxy to send HTTP requests through

The malware then spins up several threads, each running a configurable number of HTTP clients using Valyala’s fasthttp library, an open source Go library for making high-performance HTTP requests. After this is complete, it uses these clients to perform an HTTP flood attack against the target.

A snippet showing the fasthttp client creation loop, as well as a function to report the worker count back to the C2.
Figure 6: A snippet showing the fasthttp client creation loop, as well as a function to report the worker count back to the C2.

In addition, it also features several flags to enable different bypass mechanisms to augment the malware:

  • WordPress bypass (does not appear to be implemented - the flag is not used anywhere)
  • Random query strings appended to the URL
  • Spoofed forwarding headers with random IP addresses
  • Cloudflare under-attack-mode (UAM) bypass
  • HTTP2 rapid reset

The most interesting of these is the Cloudflare UAM bypass mechanism. When this is enabled, the malware will attempt to use a bundled ChromeDP binary to solve the Cloudflare JavaScript challenge that is presented to new visitors. If this succeeds, the clearance cookie obtained is then included in subsequent requests. This is unlikely to work in most cases as headless Chrome browsers are often flagged, and a regular CAPTCHA is instead served.

The UAM bypass success snippet.
Figure 7: The UAM bypass success snippet.

Additionally, the malware has a flag to enable an HTTP2 rapid reset attack mode instead of a regular HTTP flood. In HTTP2, a client can create thousands of requests within a single connection using multiplexing, allowing sites to load faster. The number of request streams per connection is capped however, so in a rapid reset attack many requests are made and then immediately cancelled to allow more requests to be created. This allows a single client to execute vastly more requests per second and use more server resources than it otherwise would, allowing for more effective denial-of-service (DoS) attacks.

 The HTTP2 rapid reset snippet from the main attack function.
Figure 8: The HTTP2 rapid reset snippet from the main attack function.

API/C2 analysis

As mentioned throughout the malware analysis section, the malware communicates with a C2 server using HTTP. The server is behind Cloudflare, which obscures its hosting location and prevents analysis. However, based on analysis of the spreader, it's likely running on GitHub CodeSpaces.

When sending a malformed request to the API, an error generated by the Pydantic library is returned:

{"detail":[{"type":"missing","loc":["body","vps_id"],"msg":"Field required","input":{"vps_name":"xxxxx"},"url":"https://errors.pydantic.dev/2.11/v/missing"}]}

This shows they are using Python for the API, which is the same language that the spreader is written in.

One of the larger frameworks that ships with Pydantic is FastAPI, which also ships with Swagger. The malware author left this publicly exposed, and Darktrace’s researchers were able to obtain a copy of their API documentation. The author appears to have noticed this however, as subsequent attempts to access it now returns a HTTP 404 Not Found error.

Swagger UI view based on the obtained OpenAPI spec.
Figure 9: Swagger UI view based on the obtained OpenAPI spec.

This is useful to have as it shows all the API endpoints, including the exact fields they take and return, along with comments on each endpoint written by the attacker themselves.

It is very likely a DDoS for hire platform (or at the very least, designed for multi-tenant use) based on the extensive user API, which features authentication, distinctions between privilege level (admin vs user), and limitations on what types of attack a user can execute. The screenshot below shows the admin-only user create endpoint, with the default limits.

The admin-only user create endpoint shadow v2
Figure 10: The admin-only user create endpoint.

The endpoint used to launch attacks can also be seen, which lines up with the options previously seen in the malware itself. Interestingly, this endpoint requires a list of zombie systems to launch the attack from. This is unusual as most DDoS for hire services will decide this internally or just launch the attack from every infected host (zombie). No endpoints that returned a list of zombies were found, however, it’s possible one exists as the return types are not documented for all the API endpoints.

The attack start endpoint shadow v2
Figure 11: The attack start endpoint.

There is also an endpoint to manage a blacklist of hosts that cannot be attacked. This could be to stop users from launching attacks against sites operated by the malware author, however it’s also possible the author could be attempting to sell protection to victims, which has been seen previously with other DDoS for hire services.

Blacklist endpoints shadow v2 DDoS
Figure 12: Blacklist endpoints.

Attempting to visit shadow[.]aurozacloud[.]xyz results in a seizure notice. It is most likely fake the same backend is still in use and all of the API endpoints continue to work. Appending /login to the end of the path instead brings up the login screen for the DDoS platform. It describes itself as an “advanced attack platform”, which highlights that it is almost certainly a DDoS for hire service. The UI is high quality, written in Tailwind, and even features animations.

The fake seizure notice.
Figure 13: The fake seizure notice.
The login UI at /login.
Figure 14: The login UI at /login.

Conclusion

By leveraging containerization, an extensive API, and with a full user interface, this campaign shows the continued development of cybercrime-as-a-service. The ability to deliver modular functionality through a Go-based RAT and expose a structured API for operator interaction highlights how sophisticated some threat actors are.

For defenders, the implications are significant. Effective defense requires deep visibility into containerized environments, continuous monitoring of cloud workloads, and behavioral analytics capable of identifying anomalous API usage and container orchestration patterns. The presence of a DDoS-as-a-service panel with full user functionality further emphasizes the need for defenders to think of these campaigns not as isolated tools but as evolving platforms.

Appendices

References

1. https://www.virustotal.com/gui/file/1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600f9bd755042f6

2. https://www.virustotal.com/gui/file/1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c

IoCs

Malware hashes (SHA256)

●      2462467c89b4a62619d0b2957b21876dc4871db41b5d5fe230aa7ad107504c99

●      1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600f9bd755042f6

●      1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c

C2 domain

●      shadow.aurozacloud[.]xyz

Spreader IPs

●      23.97.62[.]139

●      23.97.62[.]136

Yara rule

rule ShadowV2 {

meta:

author = "nathaniel.bill@darktrace.com"

description = "Detects ShadowV2 botnet implant"

strings:

$string1 = "shadow-go"

$string2 = "shadow.aurozacloud.xyz"

$string3 = "[SHADOW-NODE]"

$symbol1 = "main.registerWithMaster"

$symbol2 = "main.handleStartAttack"

$symbol3 = "attacker.bypassUAM"

$symbol4 = "attacker.performHTTP2RapidReset"

$code1 = { 48 8B 05 ?? ?? ?? ?? 48 8B 1D ?? ?? ?? ?? E8 ?? ?? ?? ?? 48 8D 0D ?? ?? ?? ?? 48 89 8C 24 38 01 00 00 48 89 84 24 40 01 00 00 48 8B 4C 24 40 48 BA 00 09 6E 88 F1 FF FF FF 48 8D 04 0A E8 ?? ?? ?? ?? 48 8D 0D ?? ?? ?? ?? 48 89 8C 24 48 01 00 00 48 89 84 24 50 01 00 00 48 8D 05 ?? ?? ?? ?? BB 05 00 00 00 48 8D 8C 24 38 01 00 00 BF 02 00 00 00 48 89 FE E8 ?? ?? ?? ?? }

$code2 = { 48 89 35 ?? ?? ?? ?? 0F B6 94 24 80 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 81 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 82 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 83 02 00 00 88 15 ?? ?? ?? ?? 48 8B 05 ?? ?? ?? ?? }

$code3 = { 48 8D 15 ?? ?? ?? ?? 48 89 94 24 68 04 00 00 48 C7 84 24 78 04 00 00 15 00 00 00 48 8D 15 ?? ?? ?? ?? 48 89 94 24 70 04 00 00 48 8D 15 ?? ?? ?? ?? 48 89 94 24 80 04 00 00 48 8D 35 ?? ?? ?? ?? 48 89 B4 24 88 04 00 00 90 }

condition:

uint16(0) == 0x457f and (2 of ($string*) or 2 of ($symbol*) or any of ($code*))

}

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI