Blog
/
Network
/
December 14, 2021

Log4Shell Vulnerability Detection & Response With Darktrace

Learn how Darktrace's AI detects and responds to Log4Shell attacks. Explore real-world examples and see how Darktrace identified and mitigated cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Justin Fier
SVP, Red Team Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Dec 2021

In this blog, we’ll take a look at the Log4Shell vulnerability and provide real-world examples of how Darktrace detects and responds to attacks attempting to leverage Log4Shell in the wild.

Log4Shell is now the well-known name for CVE-2021-44228 – a severity 10 zero-day exploiting a well-known Java logging utility known as Log4j. Vulnerabilities are discovered daily, and some are more severe than others, but the fact that this open source utility is nested into nearly everything, including the Mars Ingenuity drone, makes this that much more menacing. Details and further updates about Log4Shell are still emerging at the publication date of this blog.

Typically, zero-days with the power to reach this many systems are held close to the chest and only used by nation states for high value targets or operations. This one, however, was first discovered being used against Minecraft gaming servers, shared in chat amongst gamers.

While all steps should be taken to deploy mitigations to the Log4Shell vulnerability, these can take time. As evidenced here, behavioral detection can be used to look for signs of post-exploitation activity such as scanning, coin mining, lateral movement, and other activities.

Darktrace initially detected the Log4Shell vulnerability targeting one of our customers’ Internet-facing servers, as you will see in detail in an actual anonymized threat investigation below. This was highlighted and reported using Cyber AI Analyst, unpacked here by our SOC team. Please take note that this was using pre-existing algorithms without retraining classifiers or adjusting response mechanisms in reaction to Log4Shell cyber-attacks.

How Log4Shell works

The vulnerability works by taking advantage of improper input validation by the Java Naming and Directory Interface (JNDI). A command comes in from an HTTP user-agent, encrypted HTTPS connection, or even a chat room message, and the JNDI sends that to the target system in which it gets executed. Most libraries and applications have checks and protections in place to prevent this from happening, but as seen here, they get missed at times.

Various threat actors have started to leverage the vulnerability in attacks, ranging from indiscriminate crypto-mining campaigns to targeted, more sophisticated attacks.

Real-world example 1: Log4Shell exploited on CVE ID release date

Darktrace saw this first example on December 10, the same day the CVE ID was released. We often see publicly documented vulnerabilities being weaponized within days by threat actors. This attack hit an Internet-facing device in an organization’s demilitarized zone (DMZ). Darktrace had automatically classified the server as an Internet-facing device based on its behavior.

The organization had deployed Darktrace in the on-prem network as one of many coverage areas that include cloud, email and SaaS. In this deployment, Darktrace had good visibility of the DMZ traffic. Antigena was not active in this environment, and Darktrace was in detection-mode only. Despite this fact, the client in question was able to identify and remediate this incident within hours of the initial alert. The attack was automated and had the goal of deploying a crypto-miner known as Kinsing.

In this attack, the attacker made it harder to detect the compromise by encrypting the initial command injection using HTTPS over the more common HTTP seen in the wild. Despite this method being able to bypass traditional rules and signature-based systems Darktrace was able to spot multiple unusual behaviors seconds after the initial connection.

Initial compromise details

Through peer analysis Darktrace had previously learned what this specific DMZ device and its peer group normally do in the environment. During the initial exploitation, Darktrace detected various subtle anomalies that taken together made the attack obvious.

  1. 15:45:32 Inbound HTTPS connection to DMZ server from rare Russian IP — 45.155.205[.]233;
  2. 15:45:38 DMZ server makes new outbound connection to the same rare Russian IP using two new user agents: Java user agent and curl over a port that is unusual to serve HTTP compared to previous behavior;
  3. 15:45:39 DMZ server uses an HTTP connection with another new curl user agent (‘curl/7.47.0’) to the same Russian IP. The URI contains reconnaissance information from the DMZ server.

All this activity was detected not because Darktrace had seen it before, but because it strongly deviated from the regular ‘pattern of life’ for this and similar servers in this specific organization.

This server never reached out to rare IP addresses on the Internet, using user agents it never used before, over protocol and port combinations it never uses. Every point-in-time anomaly itself may have presented slightly unusual behavior – but taken together and analyzed in the context of this particular device and environment, the detections clearly tell a bigger story of an ongoing cyber-attack.

Darktrace detected this activity with various models, for example:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Callback on Web Facing Device

Further tooling and crypto-miner download

Less than 90 minutes after the initial compromise, the infected server started downloading malicious scripts and executables from a rare Ukrainian IP 80.71.158[.]12.

The following payloads were subsequently downloaded from the Ukrainian IP in order:

  • hXXp://80.71.158[.]12//lh.sh
  • hXXp://80.71.158[.]12/Expl[REDACTED].class
  • hXXp://80.71.158[.]12/kinsing
  • hXXp://80.71.158[.]12//libsystem.so
  • hXXp://80.71.158[.]12/Expl[REDACTED].class

Using no threat intelligence or detections based on static indicators of compromise (IoC) such as IPs, domain names or file hashes, Darktrace detected this next step in the attack in real time.

The DMZ server in question never communicated with this Ukrainian IP address in the past over these uncommon ports. It is also highly unusual for this device and its peers to download scripts or executable files from this type of external destination, in this fashion. Shortly after these downloads, the DMZ server started to conduct crypto-mining.

Darktrace detected this activity with various models, for example:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Internet Facing System with High Priority Alert

Surfacing the Log4Shell incident immediately

In addition to Darktrace detecting each individual step of this attack in real time, Darktrace Cyber AI Analyst also surfaced the overarching security incident, containing a cohesive narrative for the overall attack, as the most high-priority incident within a week’s worth of incidents and alerts in Darktrace. This means that this incident was the most obvious and immediate item highlighted to human security teams as it unfolded. Darktrace’s Cyber AI Analyst found each stage of this incident and asked the very questions you would expect of your human SOC analysts. From the natural language report generated by the Cyber AI Analyst, a summary of each stage of the incident followed by the vital data points human analysts need, is presented in an easy to digest format. Each tab signifies a different part of this incident outlining the actual steps taken during each investigative process.

The result of this is no sifting through low-level alerts, no need to triage point-in-time detections, no putting the detections into a bigger incident context, no need to write a report. All of this was automatically completed by the AI Analyst saving human teams valuable time.

The below incident report was automatically created and could be downloaded as a PDF in various languages.

Figure 1: Darktrace’s Cyber AI Analyst surfaces multiple stages of the attack and explains its investigation process

Real-world example 2: Responding to a different attack using Log4Shell

On December 12, another organization’s Internet-facing server was initially compromised via Log4Shell. While the details of the compromise are different – other IoCs are involved – Darktrace detected and surfaced the attack similarly to the first example.

Interestingly, this organization had Darktrace Antigena in autonomous mode on their server, meaning the AI can take autonomous actions to respond to ongoing cyber-attacks. These responses can be delivered via a variety of mechanisms, for instance, API interactions with firewalls, other security tools, or native responses issued by Darktrace.

In this attack the rare external IP 164.52.212[.]196 was used for command and control (C2) communication and malware delivery, using HTTP over port 88, which was highly unusual for this device, peer group and organization.

Antigena reacted in real time in this organization, based on the specific context of the attack, without any human in the loop. Antigena interacted with the organization’s firewall in this case to block any connections to or from the malicious IP address – in this case 164.52.212[.]196 – over port 88 for 2 hours with the option of escalating the block and duration if the attack appears to persist. This is seen in the illustration below:

Figure 2: Antigena’s response

Here comes the trick: thanks to Self-Learning AI, Darktrace knows exactly what the Internet-facing server usually does and does not do, down to each individual data point. Based on the various anomalies, Darktrace is certain that this represents a major cyber-attack.

Antigena now steps in and enforces the regular pattern of life for this server in the DMZ. This means the server can continue doing whatever it normally does – but all the highly anomalous actions are interrupted as they occur in real time, such as speaking to a rare external IP over port 88 serving HTTP to download executables.

Of course the human can change or lift the block at any given time. Antigena can also be configured to be in human confirmation mode, having the human in the loop at certain times during the day (e.g. office hours) or at all times, depending on an organization’s needs and requirements.

Conclusion

This blog illustrates further aspects of cyber-attacks leveraging the Log4Shell vulnerability. It also demonstrates how Darktrace detects and responds to zero-day attacks if Darktrace has visibility of the attacked entities.

While Log4Shell is dominating the IT and security news, similar vulnerabilities have surfaced in the past and will appear in the future. We’ve spoken about our approach to detecting and responding to similar vulnerabilities and surrounding cyber-attacks before, for instance:

As always, companies should aim for a defense-in-depth strategy combining preventative security controls with detection and response mechanisms, as well as strong patch management.

Thanks to Brianna Leddy (Darktrace’s Director of Analysis) for her insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Justin Fier
SVP, Red Team Operations

More in this series

No items found.

Blog

/

Email

/

December 4, 2025

How Darktrace is ending email security silos with new capabilities in cross-domain detection, DLP, and native Microsoft integrations

Default blog imageDefault blog image

A new era of reputation-aware, unified email security

Darktrace / EMAIL is redefining email defense with new innovations that close email security silos and empower SOC teams to stop multi-stage attacks – without disrupting business operations.  

By extending visibility across interconnected domains, Darktrace catches the 17% of threats that leading SEGs miss, including multi-stage attacks like email bombing and cloud platform abuse. Its label-free behavioral DLP protects sensitive data without reliance on manual rules or classification, while DMARC strengthens brand trust and authenticity. With native integrations for Microsoft Defender and Security Copilot, SOC teams can now investigate and respond faster, reducing risk and maintaining operational continuity across the enterprise.

Summary of what’s new:

  • Cross-domain AI-native detection unifying email, identity, and SaaS
  • Label-free behavioral DLP for effortless data protection
  • Microsoft Defender and Security Copilot integrations for streamlined investigation and response

Why email security must evolve

Today’s attacks don’t stop at the inbox. They move across domains – email to identity, SaaS, and network – exploiting the blind spots between disconnected tools. Yet most email security solutions still operate in isolation, unable to see or respond beyond the message itself.

In 2024, Darktrace detected over 30 million phishing attempts: 38% targeting high-value individuals and almost a third using novel social engineering, including AI-generated text. Generative AI is amplifying the realism and scale of social engineering, while customers face a wave of new techniques like email bombing, where attackers flood inboxes to distract or manipulate users, and polymorphic malware, which continuously evolves to evade static defenses.

Meanwhile, defenders are exposed to traditional DLP tools that create operational drag with high false positives and rigid policies. Accidental insider breachers remain a major risk to organizations: 6% of all data breaches are caused by misdelivery, and 95% of those incidents involve personal data.

Tool sprawl compounds the issue. The average enterprise manages around 75 security products, and 69% report operational strain as a result. This complexity is counterproductive – and with legacy SEGs failing to adapt to detect threats that exploit human behavior, analysts are left juggling an unwieldy patchwork of fragmented defenses.

The bottom line? Siloed email defenses can’t keep pace with today’s AI-driven, cross domain attacks.

Beyond detection: AI built for modern threats

Darktrace / EMAIL is uniquely designed to catch the threats SEGs miss, powered by Self-Learning AI. It learns the communication patterns of every user – correlating behavioral signals from email, identity, and SaaS – to identify the subtle, context-driven deviations that define advanced social engineering and supply chain attacks.

Unlike tools that rely on static rules or historical attack data, Darktrace’s AI assumes a zero trust posture, treating every interaction as a potential risk. It detects novel threats in real time, including those that exploit trusted relationships or mimic legitimate business processes. And because Darktrace’s technology is natively unified, it delivers precise, coordinated responses that neutralize threats in real time.

Powerful innovations to Darktrace / EMAIL

Improved, multi-domain threat detection and response

With this update, Darktrace reveals multi-domain detection linking behavioral signals across email, identity, and SaaS to uncover advanced attacks. Darktrace leverages its existing agentic platform to understand behavioral deviations in any communication channel and take precise actions regardless of the domain.  

This innovation enables customers to:

  • Correlate behavioral signals across domains to expose cross-channel threats and enable coordinated response
  • Link email and identity intelligence to neutralize multi-stage attacks, including advanced email bombing campaigns

Detection accuracy is further strengthened through layering with traditional threat intelligence:

  • Integrated antivirus verdicts improve detection efficacy by adding traditional file scanning
  • Structured threat intelligence (STIX/TAXII) enriches alerts with global context for faster triage and prioritization

Expanded ecosystem visibility also includes:

  • Salesforce integration, enabling automatic action on potentially malicious tickets auto-created from emails – accelerating threat response and reducing manual burden

Advancements in label-free DLP

Darktrace is delivering the industry’s first label-free data loss prevention (DLP) solution powered by a proprietary domain specific language model (DSLM).  

This update expands DLP to protect against both secrets and personally identifiable information (PII), safeguarding sensitive data without relying on status rules or manual classification. The DSLM is tuned for email/DLP semantics so it understands entities, PII patterns, and message context quickly enough to enforce at send time.

Key enhancements include:

  • Behaviorally enhanced PII detection that automatically defines over 35+ new categories, including personal, financial, and health data  
  • Added detail to DLP alerts in the UI, showing exactly how and when DLP policies were applied
  • Enhanced Cyber AI Analyst narratives to explain detection logic, making it easier to investigate and escalate incidents

And for further confidence in outbound mail, discover new updates to DMARC, with support for BIMI logo verification, automatic detection of both MTA-STS and TLS records, and data exports for deeper analysis and reporting. Accessible for all organizations, available now on the Azure marketplace.

Streamlined SOC workflows, with Microsoft-native integrations

This update introduces new integrations that simplify SOC operations, unify visibility, and accelerate response. By embedding directly into the Microsoft ecosystem – with Defender and Security Copilot – analysts gain instant access to correlated insights without switching consoles.

New innovations include:

  • Unified quarantine management with Microsoft Defender, centralizing containment within the native Microsoft interface and eliminating console hopping
  • Ability to surface threat insights directly in Copilot via the Darktrace Email Analysis Agent, eliminating data hunting and simplifying investigations
  • Automatic ticket creation in JIRA when users report suspicious messages
  • Sandbox analysis integration, enabling payload inspection in isolated environments directly from the Darktrace UI

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

  1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.
  2. Redefining NDR with industry-first autonomous threat investigation from network to endpoint  
  3. Innovations to our suite of Exposure Management & Attack Surface Management tools

As attackers exploit gaps between tools, the Darktrace ActiveAI Security Platform delivers unified detection, automated investigation, and autonomous response across cloud, endpoint, email, network, and OT. With full-stack visibility and AI-native workflows, Darktrace empowers security teams to detect, understand, and stop novel threats before they escalate.

Join our Live Launch Event

When? December 9, 2025

What will be covered? Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 4, 2025

The 17% of email threats SEGs miss – and how Darktrace catches them

Photo of analysts at a computerDefault blog imageDefault blog image

17%: The figure that changes your risk math

Most organizations deploy a Secure Email Gateway (SEG) assuming it will catch whatever their native email security provider would not be able to. But the data tells a different story. Nearly one in six of the riskiest inbound emails still evade the native + SEG layers on the first pass – 17% is the average SEG miss rate after Microsoft filtering.  

How did we calculate the miss rate? The figure comes from a volume-weighted analysis of real-world enterprise deployments where Darktrace operated alongside a SEG, compared to deployments without a SEG. It’s based on how each security layer treated malicious emails on the first instance – if the SEG missed the email at the initial filtering but caught it minutes or hours later we considered it a miss, because the threat had already been exposed to the user. We computed the mean per category miss count across the top three widely deployed SEGs and divided that by the total number of threats that had already bypassed native filters. The resulting rate is 17.8%, conservatively communicated as “about 17%.”

This result is a powerful directional signal – not a guarantee for every environment – but significant enough to merit a closer look.

What SEGs miss most (and why it matters)

Our analysis shows that SEGs most frequently miss context-driven, low-signal attacks.

Darktrace catches more threats than SEGs across a range of attack vectors

These are the kinds of emails that look convincing to recipients and rely on business context, without overtly malicious indicators, including:

Solicitation and fraudulent requests (~21% miss rate)

Deceptive invoices, vendor “updates,” payment term changes, or urgent favors. These messages often lack obvious payloads and exploit business process mimicry, making them nearly indistinguishable from genuine correspondence in the eyes of static, rule-based filters dependent on payload analysis. 22% of breaches stemming from external actors were a result of social engineering in 2025 (Verizon 2025 Data Breach Investigations Report).

Phishing links (~20% miss rate)

Links to credential harvesters or later-weaponized sites using new or compromised domains, redirects, or shorteners. URL rotation and staging evade list-based controls; the linguistic and workflow context looks routine. This also includes threats that leverage legitimate cloud platforms to disguise their intent and avoid reputation analysis.  Phishing remains one of the most expensive cause of breaches, an average cost of $4.8 million (IBM Cost of a Data Breach Report 2025).

User impersonation (~19% miss rate)

Convincing messages that mimic executives, colleagues, or partners, often with subtle display-name or address manipulation. These attacks rely on social engineering and context, bypassing static detection and reputation checks.

Other notable misses: Credential harvesting lures and forged/abused sender addresses, both typically light on static indicators but heavy on contextual clues. 

Why SEGs miss these emails

Let’s look at some of the reasons SEGs fail to catch more advanced, context-driven attacks.

  1. Attack-centric bias. SEGs excel at recognizing known-bad indicators (spam, commodity malware). But today’s high-impact threats are supercharged by AI and can be hyper-customized with polymorphic malware or personalized social engineering. They mirror normal business communications and weaponize trust, not binary patterns.  
  2. Limited behavioral understanding. Without modeling each user’s “normal” pattern of life, subtle anomalies (timing, tone, counterpart, transaction patterns) can look benign, even if they should be flagged. Some modern solutions have begun to incorporate behavioral analysis into their products, but these are still supplements for additional information rather than integrated into the core threat detection engine.
  3. Assumed trust. Account compromise and attacks that abuse legitimate services exploit trust. SEGs weren’t designed to handle these kinds of threats, in fact, they assume trust in order to minimize false positives, leaving them wide open to attackers.  
  4. Siloed detection. Email rarely tells the whole story. Attacks pivot across email, identity, and SaaS; single-channel tools can’t connect those dots in real time. This issue is exacerbated when email security vendors are only focused on email activity, ignoring activity beyond the inbox like network or cloud account activity.
  5. Adaptive evasion. Fast domain churn, benign-looking links, and clean hosting on trusted platforms routinely outpace static rules and blocklists. No matter how great your threat intelligence or threat research teams may be, there is a reliance on a first victim – which leads to defenders remaining one step behind attackers. 

How Darktrace / EMAIL catches the threats SEGs miss

Everywhere a SEG falters, Darktrace excels. Let’s take a look why.

  • Self-Learning AI: Darktrace learns the unique communication patterns of every user, department, and supplier, flagging the subtle deviations that typify social engineering and impersonation. 
  • A zero trust approach: According to Gartner, many organizations fail to extend their zero-trust strategy to email, leaving a critical gap. Darktrace assumes no trust, applying the zero trust principle across all aspects of email communication.
  • Cross-domain context: Correlates behavior across email, identity, and SaaS, exposing multi-stage campaigns that a siloed SEG can’t piece together. 
  • Better together with native providers: Operates alongside your native email security – not against it – so protection is additive. Darktrace ingests native signals and orchestrate unified quarantine without duplicating policy stacks or forcing you to disable built-in protections. 

For example: one of our customers, a global enterprise saw a surge of “document-share” notifications from a trusted collaboration platform. The domain and authentication looked fine; their SEG allowed it. Darktrace / EMAIL flagged it because the supplier’s sharing behavior and permission scope deviated from normal (volume, recipients, and access level). Follow-up confirmed the supplier account was compromised. Behavioral context – not rules or signatures – made the difference. 

Three steps to building a modern email security stack

Let’s end with three strategic takeaways for ensuring your email security is fit-for-purpose.

  1. Defense-in-depth = diversity, not duplication

Why it matters: Two security layers with the same detection philosophy (e.g. SEG + native email security) create overlapping blind spots. Both native email security providers and SEGs are attack-centric solutions that rely on past threats and threat intelligence. True defense-in-depth ensures you are asking different questions of every email that comes through.

How to apply: Pair your native email security with behavioral AI that learns how your business communicates. Eliminate redundant layers that only add cost and latency. 

  1. Coordinate the layers you keep

Why it matters:  Layers that don’t talk create delays and hand-offs; SEGs often become sole decision-makers by forcing native protections off. 

How to apply:  Favor an ICES approach that ingests native signals and can orchestrate unified quarantine, so detections become actions in one motion. 

  1. Quantify your security gap with a POV

Why it matters:  Every environment is different. You need evidence before making changes to your stack.

How to apply:  Run Darktrace / EMAIL in observe mode next to your current stack to surface exactly what’s still getting through. Use those results to plan your transition and measure improvement. 

Ready to claim 17% more protection? Request a demo with Darktrace / EMAIL to quantify what your SEG is missing, then decide how much of that residual risk you’re willing to accept. We’ll help you plan a clean, staged transition that preserves native protections and streamlines operations.  In the meantime, calculate your potential ROI using Darktrace / EMAIL with our handy calculator.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI