Blog
/

Threat Finds

RESPOND

/
December 14, 2021

Log4Shell Vulnerability Detection & Response With Darktrace

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Dec 2021
Learn how Darktrace's AI detects and responds to Log4Shell attacks. Explore real-world examples and see how Darktrace identified and mitigated cyber threats.

In this blog, we’ll take a look at the Log4Shell vulnerability and provide real-world examples of how Darktrace detects and responds to attacks attempting to leverage Log4Shell in the wild.

Log4Shell is now the well-known name for CVE-2021-44228 – a severity 10 zero-day exploiting a well-known Java logging utility known as Log4j. Vulnerabilities are discovered daily, and some are more severe than others, but the fact that this open source utility is nested into nearly everything, including the Mars Ingenuity drone, makes this that much more menacing. Details and further updates about Log4Shell are still emerging at the publication date of this blog.

Typically, zero-days with the power to reach this many systems are held close to the chest and only used by nation states for high value targets or operations. This one, however, was first discovered being used against Minecraft gaming servers, shared in chat amongst gamers.

While all steps should be taken to deploy mitigations to the Log4Shell vulnerability, these can take time. As evidenced here, behavioral detection can be used to look for signs of post-exploitation activity such as scanning, coin mining, lateral movement, and other activities.

Darktrace initially detected the Log4Shell vulnerability targeting one of our customers’ Internet-facing servers, as you will see in detail in an actual anonymized threat investigation below. This was highlighted and reported using Cyber AI Analyst, unpacked here by our SOC team. Please take note that this was using pre-existing algorithms without retraining classifiers or adjusting response mechanisms in reaction to Log4Shell cyber-attacks.

How Log4Shell works

The vulnerability works by taking advantage of improper input validation by the Java Naming and Directory Interface (JNDI). A command comes in from an HTTP user-agent, encrypted HTTPS connection, or even a chat room message, and the JNDI sends that to the target system in which it gets executed. Most libraries and applications have checks and protections in place to prevent this from happening, but as seen here, they get missed at times.

Various threat actors have started to leverage the vulnerability in attacks, ranging from indiscriminate crypto-mining campaigns to targeted, more sophisticated attacks.

Real-world example 1: Log4Shell exploited on CVE ID release date

Darktrace saw this first example on December 10, the same day the CVE ID was released. We often see publicly documented vulnerabilities being weaponized within days by threat actors. This attack hit an Internet-facing device in an organization’s demilitarized zone (DMZ). Darktrace had automatically classified the server as an Internet-facing device based on its behavior.

The organization had deployed Darktrace in the on-prem network as one of many coverage areas that include cloud, email and SaaS. In this deployment, Darktrace had good visibility of the DMZ traffic. Antigena was not active in this environment, and Darktrace was in detection-mode only. Despite this fact, the client in question was able to identify and remediate this incident within hours of the initial alert. The attack was automated and had the goal of deploying a crypto-miner known as Kinsing.

In this attack, the attacker made it harder to detect the compromise by encrypting the initial command injection using HTTPS over the more common HTTP seen in the wild. Despite this method being able to bypass traditional rules and signature-based systems Darktrace was able to spot multiple unusual behaviors seconds after the initial connection.

Initial compromise details

Through peer analysis Darktrace had previously learned what this specific DMZ device and its peer group normally do in the environment. During the initial exploitation, Darktrace detected various subtle anomalies that taken together made the attack obvious.

  1. 15:45:32 Inbound HTTPS connection to DMZ server from rare Russian IP — 45.155.205[.]233;
  2. 15:45:38 DMZ server makes new outbound connection to the same rare Russian IP using two new user agents: Java user agent and curl over a port that is unusual to serve HTTP compared to previous behavior;
  3. 15:45:39 DMZ server uses an HTTP connection with another new curl user agent (‘curl/7.47.0’) to the same Russian IP. The URI contains reconnaissance information from the DMZ server.

All this activity was detected not because Darktrace had seen it before, but because it strongly deviated from the regular ‘pattern of life’ for this and similar servers in this specific organization.

This server never reached out to rare IP addresses on the Internet, using user agents it never used before, over protocol and port combinations it never uses. Every point-in-time anomaly itself may have presented slightly unusual behavior – but taken together and analyzed in the context of this particular device and environment, the detections clearly tell a bigger story of an ongoing cyber-attack.

Darktrace detected this activity with various models, for example:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Callback on Web Facing Device

Further tooling and crypto-miner download

Less than 90 minutes after the initial compromise, the infected server started downloading malicious scripts and executables from a rare Ukrainian IP 80.71.158[.]12.

The following payloads were subsequently downloaded from the Ukrainian IP in order:

  • hXXp://80.71.158[.]12//lh.sh
  • hXXp://80.71.158[.]12/Expl[REDACTED].class
  • hXXp://80.71.158[.]12/kinsing
  • hXXp://80.71.158[.]12//libsystem.so
  • hXXp://80.71.158[.]12/Expl[REDACTED].class

Using no threat intelligence or detections based on static indicators of compromise (IoC) such as IPs, domain names or file hashes, Darktrace detected this next step in the attack in real time.

The DMZ server in question never communicated with this Ukrainian IP address in the past over these uncommon ports. It is also highly unusual for this device and its peers to download scripts or executable files from this type of external destination, in this fashion. Shortly after these downloads, the DMZ server started to conduct crypto-mining.

Darktrace detected this activity with various models, for example:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Internet Facing System with High Priority Alert

Surfacing the Log4Shell incident immediately

In addition to Darktrace detecting each individual step of this attack in real time, Darktrace Cyber AI Analyst also surfaced the overarching security incident, containing a cohesive narrative for the overall attack, as the most high-priority incident within a week’s worth of incidents and alerts in Darktrace. This means that this incident was the most obvious and immediate item highlighted to human security teams as it unfolded. Darktrace’s Cyber AI Analyst found each stage of this incident and asked the very questions you would expect of your human SOC analysts. From the natural language report generated by the Cyber AI Analyst, a summary of each stage of the incident followed by the vital data points human analysts need, is presented in an easy to digest format. Each tab signifies a different part of this incident outlining the actual steps taken during each investigative process.

The result of this is no sifting through low-level alerts, no need to triage point-in-time detections, no putting the detections into a bigger incident context, no need to write a report. All of this was automatically completed by the AI Analyst saving human teams valuable time.

The below incident report was automatically created and could be downloaded as a PDF in various languages.

Figure 1: Darktrace’s Cyber AI Analyst surfaces multiple stages of the attack and explains its investigation process

Real-world example 2: Responding to a different attack using Log4Shell

On December 12, another organization’s Internet-facing server was initially compromised via Log4Shell. While the details of the compromise are different – other IoCs are involved – Darktrace detected and surfaced the attack similarly to the first example.

Interestingly, this organization had Darktrace Antigena in autonomous mode on their server, meaning the AI can take autonomous actions to respond to ongoing cyber-attacks. These responses can be delivered via a variety of mechanisms, for instance, API interactions with firewalls, other security tools, or native responses issued by Darktrace.

In this attack the rare external IP 164.52.212[.]196 was used for command and control (C2) communication and malware delivery, using HTTP over port 88, which was highly unusual for this device, peer group and organization.

Antigena reacted in real time in this organization, based on the specific context of the attack, without any human in the loop. Antigena interacted with the organization’s firewall in this case to block any connections to or from the malicious IP address – in this case 164.52.212[.]196 – over port 88 for 2 hours with the option of escalating the block and duration if the attack appears to persist. This is seen in the illustration below:

Figure 2: Antigena’s response

Here comes the trick: thanks to Self-Learning AI, Darktrace knows exactly what the Internet-facing server usually does and does not do, down to each individual data point. Based on the various anomalies, Darktrace is certain that this represents a major cyber-attack.

Antigena now steps in and enforces the regular pattern of life for this server in the DMZ. This means the server can continue doing whatever it normally does – but all the highly anomalous actions are interrupted as they occur in real time, such as speaking to a rare external IP over port 88 serving HTTP to download executables.

Of course the human can change or lift the block at any given time. Antigena can also be configured to be in human confirmation mode, having the human in the loop at certain times during the day (e.g. office hours) or at all times, depending on an organization’s needs and requirements.

Conclusion

This blog illustrates further aspects of cyber-attacks leveraging the Log4Shell vulnerability. It also demonstrates how Darktrace detects and responds to zero-day attacks if Darktrace has visibility of the attacked entities.

While Log4Shell is dominating the IT and security news, similar vulnerabilities have surfaced in the past and will appear in the future. We’ve spoken about our approach to detecting and responding to similar vulnerabilities and surrounding cyber-attacks before, for instance:

As always, companies should aim for a defense-in-depth strategy combining preventative security controls with detection and response mechanisms, as well as strong patch management.

Thanks to Brianna Leddy (Darktrace’s Director of Analysis) for her insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Chief Product Officer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Justin Fier
SVP, Red Team Operations

Justin is one of the US’s leading cyber intelligence experts, and holds the position of SVP, Red Team Operations at Darktrace. His insights on cyber security and artificial intelligence have been widely reported in leading media outlets, including the Wall Street Journal, CNN, The Washington Post, and VICELAND. With over 10 years’ experience in cyber defense, Justin has supported various elements in the US intelligence community, holding mission-critical security roles with Lockheed Martin, Northrop Grumman Mission Systems and Abraxas. Justin is also a highly-skilled technical specialist, and works with Darktrace’s strategic global customers on threat analysis, defensive cyber operations, protecting IoT, and machine learning.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

December 9, 2024

/

Inside the SOC

A snake in the net: Defending against AiTM phishing threats and Mamba 2FA

Default blog imageDefault blog image

What are Adversary-in-the-Middle (AiTM) phishing kits?

Phishing-as-a-Service (PhaaS) platforms have significantly lowered the barriers to entry for cybercriminals, enabling a new wave of sophisticated phishing attacks. Among the most concerning developments in this landscape is the emergence of Adversary-in-the-Middle (AiTM) phishing kits, which enhance traditional phishing tactics by allowing attackers to intercept and manipulate communications in real-time. The PhaaS marketplace offers a wide variety of innovative capabilities, with basic services starting around USD 120 and more advanced services costing around USD 250 monthly [1].

These AiTM kits are designed to create convincing decoy pages that mimic legitimate login interfaces, often pre-filling user information to increase credibility. By acting as a man-in-the-middle, attackers can harvest sensitive data such as usernames, passwords, and even multi-factor authentication (MFA) tokens without raising immediate suspicion. This capability not only makes AiTM attacks more effective but also poses a significant challenge for cybersecurity defenses [2].

Mamba 2FA is one such example of a PhaaS strain with AiTM capabilities that has emerged as a significant threat to users of Microsoft 365 and other enterprise systems. Discovered in May 2024, Mamba 2FA employs advanced AiTM tactics to bypass MFA, making it particularly dangerous for organizations relying on these security measures.

What is Mamba 2FA?

Phishing Mechanism

Mamba 2FA employs highly convincing phishing pages that closely mimic legitimate Microsoft services like OneDrive and SharePoint. These phishing URLs are crafted with a specific structure, incorporating Base64-encoded parameters. This technique allows attackers to tailor the phishing experience to the targeted organization, making the deception more effective. If an invalid parameter is detected, users are redirected to a benign error page, which helps evade automated detection systems [5].

Figure 1: Phishing page mimicking the Microsoft OneDrive service.

Real-Time Communication

A standout feature of Mamba 2FA is its use of the Socket.IO JavaScript library. This library facilitates real-time communication between the phishing page and the attackers' backend servers. As users input sensitive information, such as usernames, passwords, and MFA tokens on the phishing site, this data is immediately relayed to the attackers, enabling swift unauthorized access [5].

Multi-Factor Authentication Bypass

Mamba 2FA specifically targets MFA methods that are not resistant to phishing, such as one-time passwords (OTPs) and push notifications. When a user enters their MFA token, it is captured in real-time by the attackers, who can then use it to access the victim's account immediately. This capability significantly undermines traditional security measures that rely on MFA for account protection.

Infrastructure and Distribution

The platform's infrastructure consists of two main components: link domains and relay servers. Link domains handle initial phishing attempts, while relay servers are responsible for stealing credentials and completing login processes on behalf of the attacker. The relay servers are designed to mask their IP addresses by using proxy services, making it more difficult for security systems to block them [3].

Evasion Techniques

To evade detection by security tools, Mamba 2FA employs several strategies:

  • Sandbox Detection: The platform can detect if it is being analyzed in a sandbox environment and will redirect users to harmless pages like Google’s 404 error page.
  • Dynamic URL Generation: The URLs used in phishing attempts are frequently rotated and often short-lived to avoid being blacklisted by security solutions.
  • HTML Attachments: Phishing emails often include HTML attachments that appear benign but contain hidden JavaScript that redirects users to the phishing page [5].

Darktrace’s Coverage of Mamba 2FA

Starting in July 2024, the Darktrace Threat Research team detected a sudden rise in Microsoft 365 customer accounts logging in from unusual external sources. These accounts were accessed from an anomalous endpoint, 2607:5500:3000:fea[::]2, and exhibited unusual behaviors upon logging into Software-as-a-Service (SaaS) accounts. This activity strongly correlates with a phishing campaign using Mamba 2FA, first documented in late June 2024 and tracked as Mamba 2FA by Sekoia [2][3].

Darktrace / IDENTITY  was able to identify the initial stages of the Mamba 2FA campaign by correlating subtle anomalies, such as unusual SaaS login locations. Using AI based on peer group analysis, it detected unusual behavior associated with these attacks. By leveraging Autonomous Response actions, Darktrace was able to neutralize these threats in every instance of the campaign detected.

On July 23, a SaaS user was observed logging in from a rare ASN and IP address, 2607:5500:3000:fea::2, originating from the US and successfully passed through MFA authentication.

Figure 2: Model Alert Event Log showing Darktrace’s detection of a SaaS user mailbox logging in from an unusual source it correlates with Mamba 2FA relay server.

Almost an hour later, the SaaS user was observed logging in from another suspicious IP address, 45.133.172[.]86, linked to ASN AS174 COGENT-174. This IP, originating from the UK, successfully passed through MFA validation.

Following this unusual access, the SaaS user was notably observed reading emails and files that could contain sensitive payment and contract information. This behavior suggests that the attacker may have been leveraging contextual information about the target to craft further malicious phishing emails or fraudulent invoices. Subsequently, the user was detected creating a new mailbox rule titled 'fdsdf'. This rule was configured to redirect emails from a specific domain to the 'Deleted Items' folder and automatically mark them as read.

Implications of Unusual Email Rules

Such unusual email rule configurations are a common tactic employed by attackers. They often use these rules to automatically forward emails containing sensitive keywords—such as "invoice”, "payment", or "confidential"—to an external address. Additionally, these rules help conceal malicious activities, keeping them hidden from the target and allowing the attacker to operate undetected.

Figure 3: The model alert “SaaS / Compliance / Anomalous New Email Rule,” pertaining to the unusual email rule created by the SaaS user named ‘fdsdf’.

Blocking the action

A few minutes later, the SaaS user from the unusual IP address 45.133.172[.]86 was observed attempting to send an email with the subject “RE: Payments.” Subsequently, Darktrace detected the user engaging in activities that could potentially establish persistence in the compromised account, such as registering a new authenticator app. Recognizing this sequence of anomalous behaviors, Darktrace implemented an Autonomous Response inhibitor, disabling the SaaS user for two hours. This action effectively contained potential malicious activities, such as the distribution of phishing emails and fraudulent invoices, and gave the customer’s security team the necessary time to conduct a thorough investigation and implement appropriate security measures.

Figure 4: Device Event Log displaying Darktrace’s Autonomous Response taking action by blocking the SaaS account.
Figure 5: Darktrace / IDENTITY highlighting the 16 model alerts that triggered during the observed compromise.

In another example from mid-July, similar activities related to the campaign were observed on another customer network. A SaaS user was initially detected logging in from the unusual external endpoint 2607:5500:3000:fea[::]2.

Figure 6: The SaaS / Compromise / SaaS Anomaly Following Anomalous Login model alert was triggered by an unusual login from a suspicious IP address linked to Mamba 2FA.

A few minutes later, in the same manner as demonstrated in the previous case, the actor was observed logging in from another rare endpoint, 102.68.111[.]240. However, this time it was from a source IP located in Lagos, Nigeria, which no other user on the network had been observed connecting from. Once logged in, the SaaS user updated the settings to "User registered Authenticator App with Notification and Code," a possible attempt to maintain persistence in the SaaS account.

Figure 7: Darktrace / IDENTITY highlighted the regular locations for the SaaS user. The rarity scores associated with the Mamba 2FA IP location and another IP located in Nigeria were classified as having very low regularity scores for this user.

Based on unusual patterns of user behavior, a Cyber AI Analyst Incident was also generated, detailing all potential account hijacking activities. Darktrace also applied an Autonomous Response action, disabling the user for over five hours. This swift action was crucial in preventing further unauthorized access, potential data breaches and further implications.

Figure 8: Cyber AI Analyst Incident detailing the unusual activities related to the SaaS account hijacking.

Since the customer had subscribed to Darktrace Security Operations Centre (SOC) services, Darktrace analysts conducted an additional human investigation confirming the account compromise.

How Darktrace Combats Phishing Threats

The initial entry point for Mamba 2FA account compromises primarily involves phishing campaigns using HTML attachments and deceptive links. These phishing attempts are designed to mimic legitimate Microsoft services, such as OneDrive and SharePoint, making them appear authentic to unsuspecting users. Darktrace / EMAIL leverages multiple capabilities to analyze email content for known indicators of phishing. This includes looking for suspicious URLs, unusual attachments (like HTML files with embedded JavaScript), and signs of social engineering tactics commonly used in phishing campaigns like Mamba 2FA. With these capabilities, Darktrace successfully detected Mamba 2FA phishing emails in networks where this tool is integrated into the security layers, consequently preventing further implications and account hijacks of their users.

Mamba 2FA URL Structure and Domain Names

The URL structure used in Mamba 2FA phishing attempts is specifically designed to facilitate the capture of user credentials and MFA tokens while evading detection. These phishing URLs typically follow a pattern that incorporates Base64-encoded parameters, which play a crucial role in the operation of the phishing kit.

The URLs associated with Mamba 2FA phishing pages generally follow this structure [6]:

https://{domain}/{m,n,o}/?{Base64 string}

Below are some potential Mamba 2FA phishing emails, with the Base64 strings already decoded, that were classified as certain threats by Darktrace / EMAIL. This classification was based on identifying multiple suspicious characteristics, such as HTML attachments containing JavaScript code, emails from senders with no previous association with the recipients, analysis of redirect links, among others. These emails were autonomously blocked from being delivered to users' inboxes.

Figure 9: Darktrace / EMAIL highlighted a possible phishing email from Mamba 2FA, which was classified as a 100% anomaly.
Figure 10: Darktrace / EMAIL highlighted a URL that resembles the characteristics associated with Mamba 2FA.

Conclusion

The rise of PhaaS platforms and the advent of AiTM phishing kits represent a concerning evolution in cyber threats, pushing the boundaries of traditional phishing tactics and exposing significant vulnerabilities in current cybersecurity defenses. The ability of these attacks to effortlessly bypass traditional security measures like MFA underscores the need for more sophisticated, adaptive strategies to combat these evolving threats.

By identifying and responding to anomalous activities within Microsoft 365 accounts, Darktrace not only highlights the importance of comprehensive monitoring but also sets a new standard for proactive threat detection. Furthermore, the autonomous threat response capabilities and the exceptional proficiency of Darktrace / EMAIL in intercepting and neutralizing sophisticated phishing attacks illustrate a robust defense mechanism that can effectively safeguard users and maintain the integrity of digital ecosystems.

Credit to Patrick Anjos (Senior Cyber Analyst) and Nahisha Nobregas (Senior Cyber Analyst)

Appendices

Darktrace Model Detections

  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Account Update
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Email Nexus / Unusual Login Location Following Link to File Storage
  • SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential
  • IaaS / Compliance / Uncommon Azure External User Invite
  • SaaS / Compliance / M365 External User Added to Group
  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS/ Unusual Activity / Unusual MFA Auth and SaaS Activity
  • SaaS / Compromise / Unusual Login and Account Update

Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account
  • Possible Hijack of AzureActiveDirectory Account
  • Possible Unsecured Office365 Resource

List of Indicators of Compromise (IoCs)

IoC       Type    Description + Confidence

2607:5500:3000:fea[::]2 - IPv6 - Possible Mamba 2FA relay server

2607:5500:3000:1cab:[:]2 - IPv6 - Possible Mamba 2FA relay server

References

1.     https://securityaffairs.com/136953/cyber-crime/caffeine-phishing-platform.html

2.     https://any.run/cybersecurity-blog/analysis-of-the-phishing-campaign/

3.     https://www.bleepingcomputer.com/news/security/new-mamba-2fa-bypass-service-targets-microsoft-365-accounts/

4.     https://cyberinsider.com/microsoft-365-accounts-targeted-by-new-mamba-2fa-aitm-phishing-threat/

5.     https://blog.sekoia.io/mamba-2fa-a-new-contender-in-the-aitm-phishing-ecosystem/

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

DISCOVERY - Cloud Service Dashboard

RESOURCE DEVELOPMENT - Compromise Accounts

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

INITIAL ACCESS - Phishing

Continue reading
About the author
Patrick Anjos
Senior Cyber Analyst

Blog

/

December 9, 2024

/

Cloud

Protecting your hybrid cloud: The future of cloud security in 2025 and beyond

Default blog imageDefault blog image

Cloud security in 2025

The future of cybersecurity is being shaped by the rapid adoption of cloud technologies.

As Gartner reports, “By 2027, more than 70% of enterprises will use industry cloud platforms to accelerate their business initiatives, up from less than 15% in 2023” [1].

As organizations continue to transition workloads and sensitive data to cloud environments, the complexity of securing distributed infrastructures grows. In 2025, cloud security will need to address increasingly sophisticated threats with innovative approaches to ensure resilience and trust.

Emerging threats in cloud security:

  1. Supply chain attacks in the cloud: Threat actors are targeting vulnerabilities in cloud networks, including third-party integrations and APIs. These attacks can have wide-spanning impacts, jeopardizing data security and possibly even compromising multiple organizations at once. As a result, robust detection and response capabilities are essential to identify and neutralize these attacks before they escalate.
  2. Advanced misconfiguration exploits: Misconfigurations remain a leading cause of cloud security breaches. Attackers are exploiting these vulnerabilities across dynamic infrastructures, underscoring the need for tools that provide continuous compliance validation in the future of cloud computing.
  3. Credential theft with evolving Tactics, Techniques, and Procedures (TTPs): While credential theft can result from phishing attacks, it can also happen through other means like malware, lateral movement, data breaches, weak and reused passwords, and social engineering. Adversarial innovation in carrying out these attacks requires security teams to use proactive defense strategies.
  4. Insider threats and privilege misuse: Inadequate monitoring of Identity and Access Management (IAM) in cloud security increases the risk of insider threats. The adoption of zero-trust architectures is key to mitigating these risks.
  5. Threats exploiting dynamic cloud scaling: Attackers take advantage of the dynamic nature of cloud computing, leveraging ephemeral workloads and autoscaling features to evade detection. This makes adaptive and AI-driven detection and response critical because it can more easily parse behavioral data that would take human security teams longer to investigate.

Where the industry is headed

In 2025, cloud infrastructures will become even more distributed and interconnected. Multi-cloud and hybrid models will dominate, so organizations will have to optimize workloads across platforms. At the same time, the growing adoption of edge computing and containerized applications will decentralize operations further. These trends demand security solutions that are agile, unified, and capable of adapting to rapid changes in cloud environments.

Emerging challenges in securing cloud environments

The transition to highly distributed and dynamic cloud ecosystems introduces the following key challenges:

  1. Limited visibility
    As organizations adopt multiple platforms and services, gaining a unified view of cloud architectures becomes increasingly difficult. This lack of visibility makes it unclear where sensitive data resides, which identities can access it and how, and if there are potential vulnerabilities in configurations and API infrastructure. Without end-to-end monitoring, detecting and mitigating threats in real time becomes nearly impossible.
  2. Complex environments
    The blend of public, private, and hybrid clouds, coupled with diverse service types (SaaS, PaaS, IaaS), creates a security landscape rife with configuration challenges. Each layer adds complexity, increasing the risk of misconfigurations, inconsistent policy enforcement, and gaps in defenses – all of which attackers may exploit.
  3. Dynamic nature of cloud
    Cloud infrastructures are designed to scale resources on demand, but this fluidity poses significant challenges to threat detection and incident response. Changes in configurations, ephemeral workloads, and fluctuating access points mean that on-prem network security mindsets cannot be applied to cloud security and many traditional cloud security approaches still fall short in addressing threats in real time.

Looking forward: Protecting the cloud in 2025 and beyond

Addressing these challenges requires innovation in visibility tools, AI-driven threat detection, and policy automation. The future of cloud security hinges on solutions that adapt to complexity and scale, ensuring organizations can securely navigate the growing demands of cloud-first operations.

Unsupervised Machine Learning (ML) enhances cloud security

Unlike supervised ML, which relies on labeled datasets, unsupervised ML identifies patterns and deviations in data without predefined rules, making it particularly effective in dynamic and unpredictable environments like the cloud. By analyzing the baseline behavior in cloud environments, such as typical user activity, network traffic, and resource utilization, unsupervised ML and supporting models can identify behavioral deviations linked to suspicious activity like unusual login times, irregular API calls, or unexpected data transfers, therefore flagging them as potential threats.

Learn more about how multi-layered ML improves real-time cloud detection and response in the data sheet “AI enhances cloud security.

Agent vs. Agentless deployment

The future of cloud security is increasingly focused on combining agent-based and agentless solutions to address the complexities of hybrid and multi-cloud environments.

This integrated approach enables organizations to align security measures with the specific risks and operational needs of their assets, ensuring comprehensive protection.

Agent-based systems provide deep monitoring and active threat mitigation, making them ideal for high-security environments like financial services and healthcare, where compliance and sensitive data require stringent safeguards.

Meanwhile, agentless systems offer broad visibility and scalability, seamlessly covering dynamic cloud resources without the need for extensive deployment efforts.

Together, a combination of these approaches ensures that all parts of the cloud environment are protected according to their unique risk profiles and functional requirements.

The growing adoption of this strategy highlights a shift toward adaptive, scalable, and efficient security solutions, reflecting the priorities of a rapidly evolving cloud landscape.

Shifting responsibilities: security teams must get more comfortable with cloud mindsets

Traditionally, many organizations left cloud security to dedicated cloud teams. However, it is becoming more and more common for security teams to take on the responsibilities of securing the cloud. This is also true of organizations undergoing cloud migration and spinning up cloud infrastructure for the first time.

Notably, the usual approaches to other types of cybersecurity can’t be applied the exact same way to the cloud. With the inherent dynamism and flexibility of the cloud, the necessary security mindset differs greatly from those for the network or datacenters, with which security teams may be more familiar.

For example, IAM is both critical and distinct to cloud computing, and the associated policies, rules, and downstream impacts require intentional care. IAM rules not only govern people, but also non-human entities like service accounts, API keys, and OAuth tokens. These considerations are unique to cloud security, and established teams may need to learn new skills to reduce security gaps in the cloud.

The importance of visibility: The future of network security in the cloud

As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations. Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks.

Shared visibility across both on-premises and cloud environments unifies SecOps and DevOps teams, enabling them to generate actionable insights and develop a cohesive approach. This alignment helps confidently mitigate risks across the cloud and network while streamlining workflows and accelerating the cloud migration journey—all without compromising security or operational continuity.

Cloud security ciso's guide screenshot

Ready to transform your cloud security approach? Download the CISO's Guide to Cloud Security now!

References:

[1] Gartner, June 5, 2024, “The Expanding Enterprise Investment in Cloud Security,” Available at: https://www.gartner.com/en/newsroom/press-releases/2024-06-05-the-expanding-enterprise-investment-in-cloud-security

Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI