Blog
/
Network
/
November 7, 2021

GitLab Vulnerability Exploit Detected

Stay updated on the latest cybersecurity threats and learn how AI detected a vulnerability exploit in GitLab.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Lawrence
VP, Threat Analysis, Americas
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Nov 2021

Darktrace has discovered a significant number of cases involving a successful exploit of GitLab servers — a common open source software used by developers. The vulnerability, tracked as CVE-2021-22205, allows an unauthenticated, remote attacker to execute arbitrary commands as the ‘git’ user, giving them full access to the repository, including deleting, modifying, and exfiltrating source code.

In each case discovered by Darktrace AI, attackers successfully exploited servers and ran crypto-mining malware. However, this vulnerability opens the door into a wider range of possibilities, including data exfiltration, ransomware, and supply chain attacks.

The flaw was fixed on April 14, 2021, but recent research has revealed that this vulnerability is still exploitable with over 30,000 GitLab servers remaining unpatched.

The vulnerability has affected customers in every corner of the world, with Darktrace customers in the US, EMEA and APAC all targeted. Affected industries include technology, transportation, and education.

Attack details

The cases detailed below generally follow the same pattern. First, user accounts with admin privileges are registered on a publicly accessible GitLab server belonging to an unnamed customer. This is followed by a remote execution of commands that grant the rogue accounts elevated permissions.

Figure 1: Multiple model breaches firing on an unusual data egress event on October 30, which resulted in a Proactive Threat Notification model breach.

After multiple model breaches on malicious EXE downloads and command and control (C2) activities with the TOR network, the organization received a Proactive Threat Notification (PTN) from Darktrace that immediately alerted them to the issue. This enabled the customer to remove the compromised device from the network.

The next day, Darktrace discovered cryptocurrency mining occurring on a compromised server that was communicating on a non-standard port. This triggered alerts to the customer through Darktrace’s Proactive Threat Notification service, immediately escalating the threat to their security team.

Figure 2: Multiple cryptocurrency mining model breaches from the same server firing on November 3.

The related breaches include scripts from rare external locations and rare endpoints (endpoints that have never been contacted by the breach devices in the past). Not surprisingly, the endpoints in question are crypto-mining pools.

It is important to note that this GitLab vulnerability represents only the initial attack vector, which could result in a number of scenarios. In the customer environment detailed above, crypto-mining has occurred; however, exploitation of this vulnerability could serve as the first stage of a more destructive ransomware attack, or result in stolen intellectual property.

Lastly, throughout the compromises identified across Darktrace’s customer base, it appears that the Interactsh tool was leveraged by the threat actors in the attack. Interactsh is an open-source tool for out of band data transfers and validation of security flaws, and it is commonly used by both researchers and hackers. Darktrace was easily able to identify this tool as part of the larger threat.

Cyber AI Analyst investigates

Darktrace’s Cyber AI Analyst launched an immediate investigation, stitching together different events across a five-day period and revealing four stages of the attack. This presented the security team with all the information they needed to perform effective investigation and clean up, including isolating the infected devices.

Figure 3: Cyber AI Analyst automatically investigates, piecing together the events into a single narrative.

In another customer environment, Cyber AI Analyst was again able to piece together multiple security events to present a coherent security narrative, determining that the suspicious file downloads likely contained malicious software, and recommending immediate attention from security staff.

Figure 4: In a different case, Cyber AI Analyst surfaces a summary and key metrics around the suspicious file downloads.

Cyber AI Analyst made stellar detections and Proactive Threat Notification alerted affected clients ASAP. Clients were then supported through Ask the Expert (ATE) services. There has been no evidence of ransomware thus far, but these types of attacks typically gain a foothold on Internet-exposed servers and then pivot internally to deploy ransomware.

In a third example with a separate customer, Cyber AI Analyst stitched together six different security events into a single security narrative. Here, Darktrace’s technology was able to connect the dots between C2 behavior, suspicious file downloads, unusual connections, and Tor activity, eventually leading to its discovery of cryptocurrency mining.

Cyber AI Analyst specifically identified GitLab in the suspicious file downloads from a rare external endpoint. The fact that Darktrace was able to identify this in the context of a holistic view of threatening activity across this organization’s digital ecosystem — stretching from suspicious SSL connections to the eventual crypto-mining activity — presents a remarkable picture of Cyber AI Analyst in action.

Figure 5: Cyber AI Analyst identifying the GitLab activity in the context of the wider security narrative.

Concluding thoughts

Though the patch was released in April, over 50% of deployments remain unpatched. There are potential reasons why they remain unpatched — overworked security staff, or simply negligence.

Even when CVEs are mapped and patched promptly, however, novel and never-before-seen attacks can still slip through the cracks. Before the Gitlab flaw was publicly disclosed and fixed, this vulnerability was a zero-day.

And so, rather than wait for CVEs to be publicly disclosed, organizations would be prudent to adopt technologies that can detect and respond to emerging attacks at their earliest stages — regardless of whether they are exploiting known or unknown vulnerabilities.

At Darktrace we talk a lot about the problems novel and unknown threats pose for traditional security solutions. This case shows that even when a threat is known for over six months, difficulties in implementing and rolling out patching mean it can still cause issues.

Thanks to Darktrace’s AI continuously monitoring the behavior of our customer’s devices, they were able to identify the threat at its earliest stages, before it could develop into something more disruptive like ransomware. And had the customers had Darktrace Antigena configured, the technology would have responded autonomously to contain the malicious behavior before the attackers could get past stage one.

Thanks to Darktrace analyst Waseem Akhter for his insights on the above threat find.

Learn more about Darktrace’s Self-Learning AI

Technical details

Proactive Threat Notification model detections:

  • Compromise / Anomalous File then Tor
  • Compromise / High Priority Crypto Currency Mining
  • Device / Initial Breach Chain Compromise
  • Device / Large Number of Model Breaches from Critical Network Device
  • Unusual Activity / Enhanced Unusual External Data Transfer

Other Darktrace model detections:

  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Internet Facing System File Download
  • Anomalous File / Script from Rare Location
  • Anomalous Server Activity / Outgoing from Serve
  • Compromise / Beaconing Activity To External Rare
  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large DNS Volume for Suspicious Domain
  • Compromise / Monero Mining
  • Compliance / Possible Tor Usage
  • Device / Internet Facing Device with High Priority Alert
  • Device / Large Number of Model Breaches
  • Device / Large Number of Connections to New Endpoints
  • Device / Suspicious Domain
  • Unusual Activity / Unusual External Data to New IPs

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Lawrence
VP, Threat Analysis, Americas

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI