Blog
/
Network
/
November 7, 2021

GitLab Vulnerability Exploit Detected

Stay updated on the latest cybersecurity threats and learn how AI detected a vulnerability exploit in GitLab.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Lawrence
VP, Threat Analysis, Americas
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Nov 2021

Darktrace has discovered a significant number of cases involving a successful exploit of GitLab servers — a common open source software used by developers. The vulnerability, tracked as CVE-2021-22205, allows an unauthenticated, remote attacker to execute arbitrary commands as the ‘git’ user, giving them full access to the repository, including deleting, modifying, and exfiltrating source code.

In each case discovered by Darktrace AI, attackers successfully exploited servers and ran crypto-mining malware. However, this vulnerability opens the door into a wider range of possibilities, including data exfiltration, ransomware, and supply chain attacks.

The flaw was fixed on April 14, 2021, but recent research has revealed that this vulnerability is still exploitable with over 30,000 GitLab servers remaining unpatched.

The vulnerability has affected customers in every corner of the world, with Darktrace customers in the US, EMEA and APAC all targeted. Affected industries include technology, transportation, and education.

Attack details

The cases detailed below generally follow the same pattern. First, user accounts with admin privileges are registered on a publicly accessible GitLab server belonging to an unnamed customer. This is followed by a remote execution of commands that grant the rogue accounts elevated permissions.

Figure 1: Multiple model breaches firing on an unusual data egress event on October 30, which resulted in a Proactive Threat Notification model breach.

After multiple model breaches on malicious EXE downloads and command and control (C2) activities with the TOR network, the organization received a Proactive Threat Notification (PTN) from Darktrace that immediately alerted them to the issue. This enabled the customer to remove the compromised device from the network.

The next day, Darktrace discovered cryptocurrency mining occurring on a compromised server that was communicating on a non-standard port. This triggered alerts to the customer through Darktrace’s Proactive Threat Notification service, immediately escalating the threat to their security team.

Figure 2: Multiple cryptocurrency mining model breaches from the same server firing on November 3.

The related breaches include scripts from rare external locations and rare endpoints (endpoints that have never been contacted by the breach devices in the past). Not surprisingly, the endpoints in question are crypto-mining pools.

It is important to note that this GitLab vulnerability represents only the initial attack vector, which could result in a number of scenarios. In the customer environment detailed above, crypto-mining has occurred; however, exploitation of this vulnerability could serve as the first stage of a more destructive ransomware attack, or result in stolen intellectual property.

Lastly, throughout the compromises identified across Darktrace’s customer base, it appears that the Interactsh tool was leveraged by the threat actors in the attack. Interactsh is an open-source tool for out of band data transfers and validation of security flaws, and it is commonly used by both researchers and hackers. Darktrace was easily able to identify this tool as part of the larger threat.

Cyber AI Analyst investigates

Darktrace’s Cyber AI Analyst launched an immediate investigation, stitching together different events across a five-day period and revealing four stages of the attack. This presented the security team with all the information they needed to perform effective investigation and clean up, including isolating the infected devices.

Figure 3: Cyber AI Analyst automatically investigates, piecing together the events into a single narrative.

In another customer environment, Cyber AI Analyst was again able to piece together multiple security events to present a coherent security narrative, determining that the suspicious file downloads likely contained malicious software, and recommending immediate attention from security staff.

Figure 4: In a different case, Cyber AI Analyst surfaces a summary and key metrics around the suspicious file downloads.

Cyber AI Analyst made stellar detections and Proactive Threat Notification alerted affected clients ASAP. Clients were then supported through Ask the Expert (ATE) services. There has been no evidence of ransomware thus far, but these types of attacks typically gain a foothold on Internet-exposed servers and then pivot internally to deploy ransomware.

In a third example with a separate customer, Cyber AI Analyst stitched together six different security events into a single security narrative. Here, Darktrace’s technology was able to connect the dots between C2 behavior, suspicious file downloads, unusual connections, and Tor activity, eventually leading to its discovery of cryptocurrency mining.

Cyber AI Analyst specifically identified GitLab in the suspicious file downloads from a rare external endpoint. The fact that Darktrace was able to identify this in the context of a holistic view of threatening activity across this organization’s digital ecosystem — stretching from suspicious SSL connections to the eventual crypto-mining activity — presents a remarkable picture of Cyber AI Analyst in action.

Figure 5: Cyber AI Analyst identifying the GitLab activity in the context of the wider security narrative.

Concluding thoughts

Though the patch was released in April, over 50% of deployments remain unpatched. There are potential reasons why they remain unpatched — overworked security staff, or simply negligence.

Even when CVEs are mapped and patched promptly, however, novel and never-before-seen attacks can still slip through the cracks. Before the Gitlab flaw was publicly disclosed and fixed, this vulnerability was a zero-day.

And so, rather than wait for CVEs to be publicly disclosed, organizations would be prudent to adopt technologies that can detect and respond to emerging attacks at their earliest stages — regardless of whether they are exploiting known or unknown vulnerabilities.

At Darktrace we talk a lot about the problems novel and unknown threats pose for traditional security solutions. This case shows that even when a threat is known for over six months, difficulties in implementing and rolling out patching mean it can still cause issues.

Thanks to Darktrace’s AI continuously monitoring the behavior of our customer’s devices, they were able to identify the threat at its earliest stages, before it could develop into something more disruptive like ransomware. And had the customers had Darktrace Antigena configured, the technology would have responded autonomously to contain the malicious behavior before the attackers could get past stage one.

Thanks to Darktrace analyst Waseem Akhter for his insights on the above threat find.

Learn more about Darktrace’s Self-Learning AI

Technical details

Proactive Threat Notification model detections:

  • Compromise / Anomalous File then Tor
  • Compromise / High Priority Crypto Currency Mining
  • Device / Initial Breach Chain Compromise
  • Device / Large Number of Model Breaches from Critical Network Device
  • Unusual Activity / Enhanced Unusual External Data Transfer

Other Darktrace model detections:

  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Internet Facing System File Download
  • Anomalous File / Script from Rare Location
  • Anomalous Server Activity / Outgoing from Serve
  • Compromise / Beaconing Activity To External Rare
  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large DNS Volume for Suspicious Domain
  • Compromise / Monero Mining
  • Compliance / Possible Tor Usage
  • Device / Internet Facing Device with High Priority Alert
  • Device / Large Number of Model Breaches
  • Device / Large Number of Connections to New Endpoints
  • Device / Suspicious Domain
  • Unusual Activity / Unusual External Data to New IPs

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Lawrence
VP, Threat Analysis, Americas

More in this series

No items found.

Blog

/

Cloud

/

January 14, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Cloud

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI