Blog
/
Network
/
April 2, 2024

Darktrace's Investigation of Raspberry Robin Worm

Discover how Darktrace is leading the hunt for Raspberry Robin. Explore early insights and strategies in the battle against cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Apr 2024

Introduction

In the face of increasingly hardened digital infrastructures and skilled security teams, malicious actors are forced to constantly adapt their attack methods, resulting in sophisticated attacks that are designed to evade human detection and bypass traditional network security measures.  

One such example that was recently investigated by Darktrace is Raspberry Robin, a highly evasive worm malware renowned for merging existing and novel techniques, as well as leveraging both physical hardware and software, to establish a foothold within organization’s networks and propagate additional malicious payloads.

What is Raspberry Robin?

Raspberry Robin, also known as ‘QNAP worm’, is a worm malware that was initially discovered at the end of 2023 [1], however, its debut in the threat landscape may have predated this, with Microsoft uncovering malicious artifacts linked to this threat (which it tracks under the name Storm-0856) dating back to 2019 [4]. At the time, little was known regarding Raspberry Robin’s objectives or operators, despite the large number of successful infections worldwide. While the identity of the actors behind Raspberry Robin still remains a mystery, more intelligence has been gathered about the malware and its end goals as it was observed delivering payloads from different malware families.

Who does Raspberry Robin target?

While it was initially reported that Raspberry Robin primarily targeted the technology and manufacturing industries, researchers discovered that the malware had actually targeted multiple sectors [3] [4]. Darktrace’s own investigations echoed this, with Raspberry Robin infections observed across various industries, including public administration, finance, manufacturing, retail education and transportation.

How does Raspberry Robin work?

Initially, it appeared that Raspberry Robin's access to compromised networks had not been utilized to deliver final-stage malware payloads, nor to steal corporate data. This uncertainty led researchers to question whether the actors involved were merely “cybercriminals playing around” or more serious threats [3]. This lack of additional exploitation was indeed peculiar, considering that attackers could easily escalate their attacks, given Raspberry Robin’s ability to bypass User Account Control using legitimate Windows tools [4].

However, at the end of July 2022, some clarity emerged regarding the operators' end goals. Microsoft researchers revealed that the access provided by Raspberry Robin was being utilized by an access broker tracked as DEV-0206 to distribute the FakeUpdates malware downloader [2]. Researchers further discovered malicious activity associated with Evil Corp TTPs (i.e., DEV-0243) [5] and payloads from the Fauppod malware family leveraging Raspberry Robin’s access [8]. This indicates that Raspberry Robin may, in fact, be an initial access broker, utilizing its presence on hundreds of infected networks to distribute additional payloads for paying malware operators. Thus far, Raspberry Robin has been observed distributing payloads linked to FIN11, Clop Gang, BumbleBee, IcedID, and TrueBot on compromised networks [12].

Raspberry Robin’s Continued Evolution

Since it first appeared in the wild, Raspberry Robin has evolved from "being a widely distributed worm with no observed post-infection actions [...] to one of the largest malware distribution platforms currently active" [8]. The fact that Raspberry Robin has become such a prevalent threat is likely due to the continual addition of new features and evasion capabilities to their malware [6] [7].  

Since its emergence, the malware has “changed its communication method and lateral movement” [6] in order to evade signature detections based on threat intelligence and previous versions. Endpoint security vendors commonly describe it as heavily obfuscated malware, employing multiple layers of evasion techniques to hinder detection and analysis. These include for example dropping a fake payload when analyzed in a sandboxed environment and using mixed-case executing commands, likely to avoid case-sensitive string-based detections.  

In more recent campaigns, Raspberry Robin further appears to have added a new distribution method as it was observed being downloaded from archive files sent as attachments using the messaging service Discord [11]. These attachments contained a legitimate and signed Windows executable, often abused by attackers for side-loading, alongside a malicious dynamic-link library (DLL) containing a Raspberry Robin sample.

Another reason for the recent success of the malware may be found in its use of one-day exploits. According to researchers, Raspberry Robin now utilizes several local privilege escalation exploits that had been recently disclosed, even before a proof of concept had been made available [9] [10]. This led cyber security professionals to believe that operators of the malware may have access to an exploit seller [6]. The use of these exploits enhances Raspberry Robin's detection evasion and persistence capabilities, enabling it to propagate on networks undetected.

Darktrace’s Coverage of Raspberry Robin

Through two separate investigations carried out by Darktrace’s Threat Research team, first in late 2022 and then in November 2023, it became evident that Raspberry Robin was capable of integrating new functionalities and tactics, techniques and procedures (TTPs) into its attacks. Darktrace DETECT™ provided full visibility over the evolving campaign activity, allowing for a comparison of the threat across both investigations. Additionally, if Darktrace RESPOND™ was enabled on affected networks, it was able to quickly mitigate and contain emerging activity during the initial stages, thwarting the further escalation of attacks.

Raspberry Robin Initial Infection

The most prevalent initial infection vector appears to be the introduction of an infected external drive, such as a USB stick, containing a malicious .LNK file (i.e., a Windows shortcut file) disguised as a thumb drive or network share. When clicked, the LNK file automatically launches cmd.exe to execute the malicious file stored on the external drive, and msiexec.exe to connect to a Raspberry Robin command-and-control (C2) endpoint and download the main malware component. The whole process leverages legitimate Windows processes and is therefore less likely to raise any alarms from more traditional security solutions. However, Darktrace DETECT was able to identify the use of Msiexec to connect to a rare endpoint as anomalous in every case investigated.

Little is currently known regarding how the external drives are infected and distributed, but it has been reported that affected USB drives had previously been used for printing at printing and copying shops, suggesting that the infection may have originated from such stores [13].

A method as simple as leaving an infected USB on a desk in a public location can be a highly effective social engineering tactic for attackers. Exploiting both curiosity and goodwill, unsuspecting individuals may innocently plug in a found USB, hoping to identify its owner, unaware that they have unwittingly compromised their device.

As Darktrace primarily operates on the network layer, the insertion of a USB endpoint device would not be within its visibility. Nevertheless, Darktrace did observe several instances wherein multiple Microsoft endpoints were contacted by compromised devices prior to the first connection to a Raspberry Robin domain. For example, connections to the URI '/fwlink/?LinkID=252669&clcid=0x409' were observed in multiple customer environments prior to the first Raspberry Robin external connection. This connectivity seems to be related to Windows attempting to retrieve information about installed hardware, such as a printer, and could also be related to the inserting of an external USB drive.

Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.
Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.

Raspberry Robin Command-and-Control Activity

In all cases investigated by Darktrace, compromised devices were detected making HTTP GET connections via the unusual port 8080 to Raspberry Robin C2 endpoints using the new user agent 'Windows Installer'.

The C2 hostnames observed were typically short and matched the regex /[a-zA-Z0-9]{2,4}.[a-zA-Z0-9]{2,6}/, and were hosted on various top-level domains (TLD) such as ‘.rocks’, ‘.pm’, and ‘.wf’. On one customer network, Darktrace observed the download of an MSI file from the Raspberry Robin domain ‘wak[.]rocks’. This package contained a heavily protected malicious DLL file whose purpose was unknown at the time.  

However, in September 2022, external researchers revealed that the main purpose of this DLL was to download further payloads and enable lateral movement, persistence and privilege escalation on compromised devices, as well as exfiltrating sensitive information about the device. As worm infections spread through networks automatically, exfiltrating device data is an essential process for threat actor to keep track of which systems have been infected.

On affected networks investigated by Darktrace, compromised devices were observed making C2 connections that contained sensitive device information, including hostnames and credentials, with additional host information likely found within the data packets [12].

Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.
Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.

As for C2 infrastructure, Raspberry Robin leverages compromised Internet of Things (IoT) devices such as QNAP network attached storage (NAS) systems with hijacked DNS settings [13]. NAS devices are data storage servers that provide access to the files they store from anywhere in the world. These features have been abused by Raspberry Robin operators to distribute their malicious payloads, as any uploaded file could be stored and shared easily using NAS features.

However, Darktrace found that QNAP servers are not the only devices being exploited by Raspberry Robin, with DETECT identifying other IoT devices being used as C2 infrastructure, including a Cerio wireless access point in one example. Darktrace recognized that this connection was new to the environment and deemed it as suspicious, especially as it also used new software and an unusual port for the HTTP protocol (i.e., 8080 rather than 80).

In several instances, Darktrace observed Raspberry Robin utilizing TOR exit notes as backup C2 infrastructure, with compromised devices detected connecting to TOR endpoints.

Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.

Raspberry Robin in 2022 vs 2023

Despite the numerous updates and advancements made to Raspberry Robin between the investigations carried out in 2022 and 2023, Darktrace’s detection of the malware was largely the same.

DETECT models breached during first investigation at the end of 2022:

  • Device / New User Agent
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent and New IP
  • Compromise / Suspicious Request Data
  • Compromise / Uncommon Tor Usage
  • Possible Tor Usage

DETECT models breached during second investigation in late 2023:

  • Device / New User Agent and New IP
  • Device / New User Agent and Suspicious Request Data
  • Device / New User Agent
  • Device / Suspicious Domain
  • Possible Tor Usage

Darktrace’s anomaly-based approach to threat detection enabled it to consistently detect the TTPs and IoCs associated with Raspberry Robin across the two investigations, despite the operator’s efforts to make it stealthier and more difficult to analyze.

In the first investigation in late 2022, Darktrace detected affected devices downloading addition executable (.exe) files following connections to the Raspberry Robin C2 endpoint, including a numeric executable file that appeared to be associated with the Vidar information stealer. Considering the advanced evasion techniques and privilege escalation capabilities of Raspberry Robin, early detection is key to prevent the malware from downloading additional malicious payloads.

In one affected customer environment investigated in late 2023, a total of 12 devices were compromised between mid-September and the end of October. As this particular customer did not have Darktrace RESPOND, the Raspberry Robin infection was able to spread through the network unabated until the customer acted upon Darktrace DETECT’s alerts.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have been able to take immediate action following the first observed connection to a Raspberry Robin C2 endpoint, by blocking connections to the suspicious endpoint and enforcing a device’s normal ‘pattern of life’.

By enforcing a pattern of life on an affected device, RESPOND would prevent it from carrying out any activity that deviates from this learned pattern, including connections to new endpoints using new software as was the case in Figure 5, effectively shutting down the attack in the first instance.

Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.
Figure 5: Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.

Conclusion

Raspberry Robin is a highly evasive and adaptable worm known to evolve and change its TTPs on a regular basis in order to remain undetected on target networks for as long as possible. Due to its ability to drop additional malware variants onto compromised devices, it is crucial for organizations and their security teams to detect Raspberry Robin infections at the earliest possible stage to prevent the deployment of potentially disruptive secondary attacks.

Despite its continued evolution, Darktrace's detection of Raspberry Robin remained largely unchanged across the two investigations. Rather than relying on previous IoCs or leveraging existing threat intelligence, Darktrace DETECT’s anomaly-based approach allows it to identify emerging compromises by detecting the subtle deviations in a device’s learned behavior that would typically come with a malware compromise.

By detecting the attacks at an early stage, Darktrace gave its customers full visibility over malicious activity occurring on their networks, empowering them to identify affected devices and remove them from their environments. In cases where Darktrace RESPOND was active, it would have been able to take autonomous follow-up action to halt any C2 communication and prevent the download of any additional malicious payloads.  

Credit to Alexandra Sentenac, Cyber Analyst, Trent Kessler, Senior Cyber Analyst, Victoria Baldie, Director of Incident Management

Appendices

Darktrace DETECT Model Coverage

Device / New User Agent and New IP

Device / New User Agent and Suspicious Request Data

Device / New User Agent

Compromise / Possible Tor Usage

Compromise / Uncommon Tor Usage

MITRE ATT&CK Mapping

Tactic - Technique

Command & Control - T1090.003 Multi-hop Proxy

Lateral Movement - T1210 Exploitation of remote services

Exfiltration over C2 Data - T1041 Exfiltration over C2 Channel

Data Obfuscation - T1001 Data Obfuscation

Vulnerability Scanning - T1595.002 Vulnerability Scanning

Non-Standard Port - T1571 Non-Standard Port

Persistence - T1176 Browser Extensions

Initial Access - T1189 Drive By Compromise / T1566.002  Spearphishing Link

Collection - T1185 Man in the browser

List of IoCs

IoC - Type - Description + Confidence

vqdn[.]net - Hostname - C2 Server

mwgq[.]net - Hostname - C2 Server

wak[.]rocks - Hostname - C2 Server

o7car[.]com - Hostname - C2 Server

6t[.]nz - Hostname - C2 Server

fcgz[.]net - Hostname - Possible C2 Server

d0[.]wf - Hostname - C2 Server

e0[.]wf - Hostname - C2 Server

c4z[.]pl - Hostname - C2 Server

5g7[.]at - Hostname - C2 Server

5ap[.]nl - Hostname - C2 Server

4aw[.]ro - Hostname - C2 Server

0j[.]wf - Hostname - C2 Server

f0[.]tel - Hostname - C2 Server

h0[.]pm - Hostname - C2 Server

y0[.]pm - Hostname - C2 Server

5qy[.]ro - Hostname - C2 Server

g3[.]rs - Hostname - C2 Server

5qe8[.]com - Hostname - C2 Server

4j[.]pm - Hostname - C2 Server

m0[.]yt - Hostname - C2 Server

zk4[.]me - Hostname - C2 Server

59.15.11[.]49 - IP address - Likely C2 Server

82.124.243[.]57 - IP address - C2 Server

114.32.120[.]11 - IP address - Likely C2 Server

203.186.28[.]189 - IP address - Likely C2 Server

70.124.238[.]72 - IP address - C2 Server

73.6.9[.]83 - IP address - Likely C2 Server

References

[1] https://redcanary.com/blog/raspberry-robin/  

[2] https://www.bleepingcomputer.com/news/security/microsoft-links-raspberry-robin-malware-to-evil-corp-attacks/

[3] https://7095517.fs1.hubspotusercontent-na1.net/hubfs/7095517/FLINT%202022-016%20-%20QNAP%20worm_%20who%20benefits%20from%20crime%20(1).pdf

[4] https://www.bleepingcomputer.com/news/security/microsoft-finds-raspberry-robin-worm-in-hundreds-of-windows-networks/

[5] https://therecord.media/microsoft-ties-novel-raspberry-robin-malware-to-evil-corp-cybercrime-syndicate

[6] https://securityaffairs.com/158969/malware/raspberry-robin-1-day-exploits.html

[7] https://research.checkpoint.com/2024/raspberry-robin-keeps-riding-the-wave-of-endless-1-days/

[8] https://redmondmag.com/articles/2022/10/28/microsoft-details-threat-actors-leveraging-raspberry-robin-worm.aspx

[9] https://www.bleepingcomputer.com/news/security/raspberry-robin-malware-evolves-with-early-access-to-windows-exploits/

[10] https://www.bleepingcomputer.com/news/security/raspberry-robin-worm-drops-fake-malware-to-confuse-researchers/

[11] https://thehackernews.com/2024/02/raspberry-robin-malware-upgrades-with.html

[12] https://decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/

[13] https://blog.bushidotoken.net/2023/05/raspberry-robin-global-usb-malware.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

April 14, 2025

Email bombing exposed: Darktrace’s email defense in action

picture of a computer screen showing a password loginDefault blog imageDefault blog image

What is email bombing?

An email bomb attack, also known as a "spam bomb," is a cyberattack where a large volume of emails—ranging from as few as 100 to as many as several thousand—are sent to victims within a short period.

How does email bombing work?

Email bombing is a tactic that typically aims to disrupt operations and conceal malicious emails, potentially setting the stage for further social engineering attacks. Parallels can be drawn to the use of Domain Generation Algorithm (DGA) endpoints in Command-and-Control (C2) communications, where an attacker generates new and seemingly random domains in order to mask their malicious connections and evade detection.

In an email bomb attack, threat actors typically sign up their targeted recipients to a large number of email subscription services, flooding their inboxes with indirectly subscribed content [1].

Multiple threat actors have been observed utilizing this tactic, including the Ransomware-as-a-Service (RaaS) group Black Basta, also known as Storm-1811 [1] [2].

Darktrace detection of email bombing attack

In early 2025, Darktrace detected an email bomb attack where malicious actors flooded a customer's inbox while also employing social engineering techniques, specifically voice phishing (vishing). The end goal appeared to be infiltrating the customer's network by exploiting legitimate administrative tools for malicious purposes.

The emails in these attacks often bypass traditional email security tools because they are not technically classified as spam, due to the assumption that the recipient has subscribed to the service. Darktrace / EMAIL's behavioral analysis identified the mass of unusual, albeit not inherently malicious, emails that were sent to this user as part of this email bombing attack.

Email bombing attack overview

In February 2025, Darktrace observed an email bombing attack where a user received over 150 emails from 107 unique domains in under five minutes. Each of these emails bypassed a widely used and reputable Security Email Gateway (SEG) but were detected by Darktrace / EMAIL.

Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.
Figure 1: Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.

The emails varied in senders, topics, and even languages, with several identified as being in German and Spanish. The most common theme in the subject line of these emails was account registration, indicating that the attacker used the victim’s address to sign up to various newsletters and subscriptions, prompting confirmation emails. Such confirmation emails are generally considered both important and low risk by email filters, meaning most traditional security tools would allow them without hesitation.

Additionally, many of the emails were sent using reputable marketing tools, such as Mailchimp’s Mandrill platform, which was used to send almost half of the observed emails, further adding to their legitimacy.

 Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Figure 2: Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.
Figure 3: Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.

While the individual emails detected were typically benign, such as the newsletter from a legitimate UK airport shown in Figure 3, the harmful aspect was the swarm effect caused by receiving many emails within a short period of time.

Traditional security tools, which analyze emails individually, often struggle to identify email bombing incidents. However, Darktrace / EMAIL recognized the unusual volume of new domain communication as suspicious. Had Darktrace / EMAIL been enabled in Autonomous Response mode, it would have automatically held any suspicious emails, preventing them from landing in the recipient’s inbox.

Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.
Figure 4: Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.

Following the initial email bombing, the malicious actor made multiple attempts to engage the recipient in a call using Microsoft Teams, while spoofing the organizations IT department in order to establish a sense of trust and urgency – following the spike in unusual emails the user accepted the Teams call. It was later confirmed by the customer that the attacker had also targeted over 10 additional internal users with email bombing attacks and fake IT calls.

The customer also confirmed that malicious actor successfully convinced the user to divulge their credentials with them using the Microsoft Quick Assist remote management tool. While such remote management tools are typically used for legitimate administrative purposes, malicious actors can exploit them to move laterally between systems or maintain access on target networks. When these tools have been previously observed in the network, attackers may use them to pursue their goals while evading detection, commonly known as Living-off-the-Land (LOTL).

Subsequent investigation by Darktrace’s Security Operations Centre (SOC) revealed that the recipient's device began scanning and performing reconnaissance activities shortly following the Teams call, suggesting that the user inadvertently exposed their credentials, leading to the device's compromise.

Darktrace’s Cyber AI Analyst was able to identify these activities and group them together into one incident, while also highlighting the most important stages of the attack.

Figure 5: Cyber AI Analyst investigation showing the initiation of the reconnaissance/scanning activities.

The first network-level activity observed on this device was unusual LDAP reconnaissance of the wider network environment, seemingly attempting to bind to the local directory services. Following successful authentication, the device began querying the LDAP directory for information about user and root entries. Darktrace then observed the attacker performing network reconnaissance, initiating a scan of the customer’s environment and attempting to connect to other internal devices. Finally, the malicious actor proceeded to make several SMB sessions and NTLM authentication attempts to internal devices, all of which failed.

Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Figure 6: Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.
Figure 7: Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.

While Darktrace’s Autonomous Response capability suggested actions to shut down this suspicious internal connectivity, the deployment was configured in Human Confirmation Mode. This meant any actions required human approval, allowing the activities to continue until the customer’s security team intervened. If Darktrace had been set to respond autonomously, it would have blocked connections to port 445 and enforced a “pattern of life” to prevent the device from deviating from expected activities, thus shutting down the suspicious scanning.

Conclusion

Email bombing attacks can pose a serious threat to individuals and organizations by overwhelming inboxes with emails in an attempt to obfuscate potentially malicious activities, like account takeovers or credential theft. While many traditional gateways struggle to keep pace with the volume of these attacks—analyzing individual emails rather than connecting them and often failing to distinguish between legitimate and malicious activity—Darktrace is able to identify and stop these sophisticated attacks without latency.

Thanks to its Self-Learning AI and Autonomous Response capabilities, Darktrace ensures that even seemingly benign email activity is not lost in the noise.

Credit to Maria Geronikolou (Cyber Analyst and SOC Shift Supervisor) and Cameron Boyd (Cyber Security Analyst), Steven Haworth (Senior Director of Threat Modeling), Ryan Traill (Analyst Content Lead)

Appendices

[1] https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/

[2] https://thehackernews.com/2024/12/black-basta-ransomware-evolves-with.html

Darktrace Models Alerts

Internal Reconnaissance

·      Device / Suspicious SMB Scanning Activity

·      Device / Anonymous NTLM Logins

·      Device / Network Scan

·      Device / Network Range Scan

·      Device / Suspicious Network Scan Activity

·      Device / ICMP Address Scan

·      Anomalous Connection / Large Volume of LDAP Download

·      Device / Suspicious LDAP Search Operation

·      Device / Large Number of Model Alerts

Continue reading
About the author
Maria Geronikolou
Cyber Analyst

Blog

/

Email

/

April 11, 2025

FedRAMP High-compliant email security protects federal agencies from nation-state attacks

U.S. government building with flag against blue skyDefault blog imageDefault blog image

What is FedRAMP High Authority to Operate (ATO)?

Federal Risk and Authorization Management Program (FedRAMP®) High is a government-wide program that promotes the adoption of secure cloud services across the federal government by providing a standardized approach to security and risk assessment for cloud technologies and federal agencies, ensuring the protection of federal information.  

Cybersecurity is paramount in the Defense Industrial Base (DIB), where protecting sensitive information and ensuring operational resilience from the most sophisticated adversaries has national security implications. Organizations within the DIB must comply with strict security standards to work with the U.S. federal government, and FedRAMP High is one of those standards.

Darktrace achieves FedRAMP High ATO across IT, OT, and email

Last week, Darktrace Federal shared that we achieved FedRAMP® High ATO, a significant milestone that recognizes our ability to serve federal customers across IT, OT, and email via secure cloud-native deployments.  

Achieving the FedRAMP High ATO indicates that Darktrace Federal has achieved the highest standard for cloud security controls and can handle the U.S. federal government’s most sensitive, unclassified data in cloud environments.

Azure Government email security with FedRAMP High ATO

Darktrace has now released Darktrace Commercial Government Cloud High/Email (DCGC High/Email). This applies our email coverage to systems hosted in Microsoft's Azure Government, which adheres to NIST SP 800-53 controls and other federal standards. DCGC High/Email both meets and exceeds the compliance requirements of the Department of Defense’s Cybersecurity Maturity Model Certification (CMMC), providing organizations with a much-needed email security solution that delivers unparalleled, AI-driven protection against sophisticated cyber threats.

In these ways, DCGC High/Email enhances compliance, security, and operational resilience for government and federally-affiliated customers. Notably, it is crucial for securing contractors and suppliers within DIB, helping those organizations implement necessary cybersecurity practices to protect Controlled Unclassified Information (CUI) and Federal Contract Information (FCI).

Adopting DCGC High/Email ensures organizations within the DIB can work with the government without needing to invest extensive time and money into meeting the strict compliance standards.

Building DCGC High/Email to ease DIB work with the government

DCGC High/Email was built to achieve FedRAMP High standards and meet the most rigorous security standards required of our customers. This level of compliance not only allows more organizations than ever to leverage our AI-driven technology, but also ensures that customer data is protected by the highest security measures available.

The DIB has never been more critical to national security, which means they are under constant threats from nation state and cyber criminals. We built DCGC High/Email to FedRAMP High controls to ensure sensitive company and federal government communications are secured at the highest level possible.” – Marcus Fowler, CEO of Darktrace Federal

Evolving threats now necessitate DCGC High/Email

According to Darktrace’s 2025 State of AI Cybersecurity report, more than half (54%) of global government cybersecurity professionals report seeing a significant impact from AI-powered cyber threats.  

These aren’t the only types of sophisticated threats. Advanced Persistent Threats (APTs) are launched by nation-states or cyber-criminal groups with the resources to coordinate and achieve long-term objectives.  

These attacks are carefully tailored to specific targets, using techniques like social engineering and spear phishing to gain initial access via the inbox. Once inside, attackers move laterally through networks, often remaining undetected for months or even years, silently gathering intelligence or preparing for a decisive strike.  

However, the barrier for entry for these threat actors has been lowered immensely, likely related to the observed impact of AI-powered cyber threats. Securing email environments is more important than ever.  

Darktrace’s 2025 State of AI Cybersecurity report also found that 89% of government cybersecurity professionals believe AI can help significantly improve their defensive capabilities.  

Darktrace's AI-powered defensive tools are uniquely capable of detecting and neutralizing APTs and other sophisticated threats, including ones that enter via the inbox. Our Self-Learning AI continuously adapts to evolving threats, providing real-time protection.

Darktrace builds to secure the DIB to the highest degree

In summary, Darktrace Federal's achievement of FedRAMP High ATO and the introduction of DCGC High/Email mark significant advancements in our ability to protect defense contractors and federal customers against sophisticated threats that other solutions miss.

For a technical review of Darktrace Federal’s Cyber AI Mission Defense™ solution, download an independent evaluation from the Technology Advancement Center here.

[related-resource]

Continue reading
About the author
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Your data. Our AI.
Elevate your network security with Darktrace AI