Blog

Inside the SOC

A Surge of Vidar: Network-based details of a prolific info-stealer

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2023
09
Feb 2023
In the latter half of 2022, Darktrace observed a rise in Vidar Stealer infections across its client base. These infections consisted in a predictable series of network behaviors, including usage of certain social media platforms for the retrieval of Command and Control (C2) information and usage of certain URI patterns in C2 communications. In the blog post, we will provide details of the pattern of network activity observed in these Vidar Stealer infections, along with details of Darktrace’s coverage of the activity.

In the latter half of 2022, Darktrace observed a rise in Vidar Stealer infections across its client base. These infections consisted in a predictable series of network behaviors, including usage of certain social media platforms for the retrieval of Command and Control (C2) information and usage of certain URI patterns in C2 communications. In the blog post, we will provide details of the pattern of network activity observed in these Vidar Stealer infections, along with details of Darktrace’s coverage of the activity. 

Background on Vidar Stealer

Vidar Stealer, first identified in 2018, is an info-stealer capable of obtaining and then exfiltrating sensitive data from users’ devices. This data includes banking details, saved passwords, IP addresses, browser history, login credentials, and crypto-wallet data [1]. The info-stealer, which is typically delivered via malicious spam emails, cracked software websites, malicious ads, and websites impersonating legitimate brands, is known to access profiles on social media platforms once it is running on a user’s device. The info-stealer does this to retrieve the IP address of its Command and Control (C2) server. After retrieving its main C2 address, the info-stealer, like many other info-stealers, is known to download several third-party Dynamic Link Libraries (DLLs) which it uses to gain access to sensitive data saved on the infected device. The info-stealer then bundles the sensitive data which it obtains and sends it back to the C2 server.  

Details of Attack Chain 

In the second half of 2022, Darktrace observed the following pattern of activity within many client networks:

1. User’s device makes an HTTPS connection to Telegram and/or to a Mastodon server

2. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to an unusual, external endpoint

3. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the unusual, external endpoint

4. User’s device makes an HTTP POST request with an empty User-Agent header, an empty Host header, and the target URI ‘/’ to the unusual, external endpoint 

Figure 1: The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting Telegram and then making a series of HTTP requests to 168.119.167[.]188
Figure 2:  The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting a Mastadon server and then making a series of HTTP requests to 107.189.31[.]171

Each of these activity chains occurred as the result of a user running Vidar Stealer on their device. No common method was used to trick users into running Vidar Stealer on their devices. Rather, a variety of methods, ranging from malspam to cracked software downloads appear to have been used. 

Once running on a user’s device, Vidar Stealer went on to make an HTTPS connection to either Telegram (https://t[.]me/) or a Mastodon server (https://nerdculture[.]de/ or https://ioc[.]exchange/). Telegram and Mastodon are social media platforms on which users can create profiles. Malicious actors are known to create profiles on these platforms and then to embed C2 information within the profiles’ descriptions [2].  In the Vidar cases observed across Darktrace’s client base, it seems that Vidar contacted Telegram and/or Mastodon servers in order to retrieve the IP address of its C2 server from a profile description. Since social media platforms are typically trusted, this ‘Dead Drop’ method of sharing C2 details with malware samples makes it possible for threat actors to regularly update C2 details without the communication of these changes being blocked. 

Figure 3: A screenshot a profile on the Mastodon server, nerdculture[.]de. The profile’s description contains a C2 address 

After retrieving its C2 address from the description of a Telegram or Mastodon profile, Vidar went on to make an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to its C2 server. The sequences of digits appearing in these URIs are campaign IDs. The C2 server responded to Vidar’s GET request with configuration details that likely informed Vidar’s subsequent data stealing activities. 

After receiving its configuration details, Vidar went on to make a GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the C2 server. This request was responded to with a ZIP file containing legitimate, third-party Dynamic Link Libraries such as ‘vcruntime140.dll’. Vidar used these libraries to gain access to sensitive data saved on the infected host. 

Figure 4: The above PCAP provides an example of the configuration details provided by a C2 server in response to Vidar’s first GET request 
Figure 5: Examples of DLLs included within ZIP files downloaded by Vidar samples

After downloading a ZIP file containing third-party DLLs, Vidar made a POST request containing hundreds of kilobytes of data to the C2 endpoint. This POST request likely represented exfiltration of stolen information. 

Darktrace Coverage

After infecting users’ devices, Vidar contacted either Telegram or Mastodon, and then made a series of HTTP requests to its C2 server. The info-stealer’s usage of social media platforms, along with its usage of ZIP files for tool transfer, complicate the detection of its activities. The info-stealer’s HTTP requests to its C2 server, however, caused the following Darktrace DETECT/Network models to breach:

  • Anomalous File / Zip or Gzip from Rare External Location 
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Posting HTTP to IP Without Hostname

These model breaches did not occur due to users’ devices contacting IP addresses known to be associated with Vidar. In fact, at the time that the reported activities occurred, many of the contacted IP addresses had no OSINT associating them with Vidar activity. The cause of these model breaches was in fact the unusualness of the devices’ HTTP activities. When a Vidar-infected device was observed making HTTP requests to a C2 server, Darktrace recognised that this behavior was highly unusual both for the device and for other devices in the network. Darktrace’s recognition of this unusualness caused the model breaches to occur. 

Vidar Stealer infections move incredibly fast, with the time between initial infection and data theft sometimes being less than a minute. In cases where Darktrace’s Autonomous Response technology was active, Darktrace RESPOND/Network was able to autonomously block Vidar’s connections to its C2 server immediately after the first connection was made. 

Figure 6: The Event Log for an infected device, shows that Darktrace RESPOND/Network autonomously intervened 1 second after the device first contacted the C2 server 95.217.245[.]254

Conclusion 

In the latter half of 2022, a particular pattern of activity was prolific across Darktrace’s client base, with the pattern being seen in the networks of customers across a broad range of industry verticals and sizes. Further investigation revealed that this pattern of network activity was the result of Vidar Stealer infection. These infections moved fast and were effective at evading detection due to their usage of social media platforms for information retrieval and their usage of ZIP files for tool transfer. Since the impact of info-stealer activity typically occurs off-network, long after initial infection, insufficient detection of info-stealer activity leaves victims at risk of attackers operating unbeknownst to them and of powerful attack vectors being available to launch broad compromises. 

Despite the evasion attempts made by the operators of Vidar, Darktrace DETECT/Network was able to detect the unusual HTTP activities which inevitably resulted from Vidar infections. When active, Darktrace RESPOND/Network was able to quickly take inhibitive actions against these unusual activities. Given the prevalence of Vidar Stealer [3] and the speed at which Vidar Stealer infections progress, Autonomous Response technology proves to be vital for protecting organizations from info-stealer activity.  

Thanks to the Threat Research Team for its contributions to this blog.

MITRE ATT&CK Mapping

List of IOCs

107.189.31[.]171 - Vidar C2 Endpoint

168.119.167[.]188 – Vidar C2 Endpoint 

77.91.102[.]51 - Vidar C2 Endpoint

116.202.180[.]202 - Vidar C2 Endpoint

79.124.78[.]208 - Vidar C2 Endpoint

159.69.100[.]194 - Vidar C2 Endpoint

195.201.253[.]5 - Vidar C2 Endpoint

135.181.96[.]153 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

135.181.104[.]248 - Vidar C2 Endpoint

159.69.101[.]102 - Vidar C2 Endpoint

45.8.147[.]145 - Vidar C2 Endpoint

159.69.102[.]192 - Vidar C2 Endpoint

193.43.146[.]42 - Vidar C2 Endpoint

159.69.102[.]19 - Vidar C2 Endpoint

185.53.46[.]199 - Vidar C2 Endpoint

116.202.183[.]206 - Vidar C2 Endpoint

95.217.244[.]216 - Vidar C2 Endpoint

78.46.129[.]14 - Vidar C2 Endpoint

116.203.7[.]175 - Vidar C2 Endpoint

45.159.249[.]3 - Vidar C2 Endpoint

159.69.101[.]170 - Vidar C2 Endpoint

116.202.183[.]213 - Vidar C2 Endpoint

116.202.4[.]170 - Vidar C2 Endpoint

185.252.215[.]142 - Vidar C2 Endpoint

45.8.144[.]62 - Vidar C2 Endpoint

74.119.192[.]157 - Vidar C2 Endpoint

78.47.102[.]252 - Vidar C2 Endpoint

212.23.221[.]231 - Vidar C2 Endpoint

167.235.137[.]244 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

5.252.23[.]169 - Vidar C2 Endpoint

45.89.55[.]70 - Vidar C2 Endpoint

References

[1] https://blog.cyble.com/2021/10/26/vidar-stealer-under-the-lens-a-deep-dive-analysis/

[2] https://asec.ahnlab.com/en/44554/

[3] https://blog.sekoia.io/unveiling-of-a-large-resilient-infrastructure-distributing-information-stealers/

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Roberto Romeu
Senior SOC Analyst
Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
COre coverage

More in this series

No items found.

Blog

Email

Beyond DMARC: Navigating the Gaps in Email Security

Default blog imageDefault blog image
29
Feb 2024

Email threat landscape  

Email has consistently ranked among the most targeted attack vectors, given its ubiquity and criticality to business operations. From September to December 2023, 10.4 million phishing emails were detected across Darktrace’s customer fleet demonstrating the frequency of attempted email-based attacks.

Businesses are searching for ways to harden their email security posture alongside email providers who are aiming to reduce malicious emails traversing their infrastructure, affecting their clients. Domain-based Message Authentication (DMARC) is a useful industry-wide protocol organizations can leverage to move towards these goals.  

What is DMARC?

DMARC is an email authentication protocol designed to enhance the security of email communication.

Major email service providers Google and Yahoo recently made the protocol mandatory for bulk senders in an effort to make inboxes safer worldwide. The new requirements demonstrate an increasing need for a standardized solution as misconfigured or nonexistent authentication systems continue to allow threat actors to evade detection and leverage the legitimate reputation of third parties.  

DMARC is a powerful tool that allows email administrators to confidently identify and stop certain spoofed emails; however, more organizations must implement the standard for it to reach its full potential. The success and effectiveness of DMARC is dependent on broad adoption of the standard – by organizations of all sizes.  

How does DMARC work?

DMARC builds on two key authentication technologies, Sender Policy Framework (SPF) and DomainKeys Identified Mail (DKIM) and helps to significantly improve their ability to prevent domain spoofing. SPF verifies that a sender’s IP address is authorized to send emails on behalf of a particular domain and DKIM ensures integrity of email content by providing a verifiable digital signature.  

DMARC adds to this by allowing domain owners to publish policies that set expectations for how SPF and DKIM verification checks relate to email addresses presented to users and whose authenticity the receiving mail server is looking to establish.  

These policies work in tandem to help authenticate email senders by verifying the emails are from the domain they say they are, working to prevent domain spoofing attacks. Key benefits of DMARC include:

  1. Phishing protection DMARC protects against direct domain spoofing in which a threat actor impersonates a legitimate domain, a common phishing technique threat actors use to trick employees to obtain sensitive information such as privileged credentials, bank information, etc.  
  2. Improving brand reputation: As DMARC helps to prevent impersonation of domains, it stands to maintain and increase an organization’s brand reputation. Additionally, as organizational reputation improves, so will the deliverability of emails.
  3. Increased visibility: DMARC provides enhanced visibility into email communication channels, including reports of all emails sent on behalf of your domain. This allows security teams to identify shadow-IT and any unauthorized parties using their domain.

Understanding DMARC’s Limitations

DMARC is often positioned as a way for organizations to ‘solve’ their email security problems, however, 65% of the phishing emails observed by Darktrace successfully passed DMARC verification, indicating that a significant number of threat actors are capable of manipulating email security and authentication systems in their exploits. While DMARC is a valuable tool in the fight against email-based attacks, the evolving threat landscape demands a closer look at its limitations.  

As threat actors continue to innovate, improving their stealth and evasion tactics, the number of attacks with valid DMARC authentication will only continue to increase in volume and sophistication. These can include:

  1. Phishing attacks that leverage non-spoofed domains: DMARC allows an organization to protect the domains that they own, preventing threat actors from being able to send phishing emails from their domains. However, threat actors will often create and use ‘look-a-like’ domains that closely resemble an organization’s domain to dupe users. 3% of the phishing emails identified by Darktrace utilized newly created domains, demonstrating shifting tactics.  
  2. Email Account Takeovers: If a threat actor gains access to a user’s email account through other social engineering means such as credential stuffing, they can then send phishing emails from the legitimate domain to pursue further attacks. Even though these emails are malicious, DMARC would not identify them as such because they are coming from an authorized domain or sender.  

Organizations must also ensure their inbound analysis of emails is not skewed by successful DMARC authentication. Security teams cannot inherently trust emails that pass DMARC, because the source cannot always be legitimized, like in the event of an account takeover. If a threat actor gains access to an authenticated email account, emails sent by the threat actor from that account will pass DMARC – however the contents of that email may be malicious. Sender behavior must be continuously evaluated and vetted in real time as past communication history and validated DMARC cannot be solely relied upon amid an ever-changing threat landscape.  

Security teams should lean on other security measures, such as anomaly detection tools that can identify suspicious emails without relying on historical attack rules and static data. While DMARC is not a silver bullet for email security, it is nevertheless foundational in helping organizations protect their brand identity and must be viewed as an essential layer in an organization's overall cyber security strategy.  

Implementing DMARC

Despite the criticality of DMARC for preserving brand reputation and trust, adoption of the standard has been inconsistent. DMARC can be complex to implement with many organizations lacking the time required to understand and successfully implement the standard. Because of this, DMARC set-up is often outsourced, giving security and infrastructure teams little to no visibility into or control of the process.  

Implementation of DMARC is only the start of this process, as DMARC reports must be consistently monitored to ensure organizations have visibility into who is sending mail from their domain, the volume of mail being sent and whether the mail is passing authentication protocols. This process can be time consuming for security teams who are already faced with mounting responsibilities, tight budgets, and personnel shortages. These complexities unfortunately delay organizations from using DMARC – especially as many today still view it as a ‘nice to have’ rather than an essential.  

With the potential complexities of the DMARC implementation process, there are many ways security and infrastructure teams can still successfully roll out the standard. Initial implementation should start with monitoring, policy adjustment and then enforcement. As business changes over time, DMARC should be reviewed regularly to ensure ongoing protection and maintain domain reputation.

The Future of Email Security

As email-based attacks continue to rise, the industry must recognize the importance of driving adoption of foundational email authentication protocols. To do this, a new and innovative approach to DMARC is needed. DMARC products must evolve to better support organizations throughout the ongoing DMARC monitoring process, rather than just initial implementation. These products must also be able to share intelligence across an organization’s security stack, extending beyond email security tools. Integration across these products and tools will help organizations optimize their posture, ensuring deep understanding of their domain and increased visibility across the entire enterprise.

DMARC is critical in protecting brand identity and mitigating exact-domain based attacks. However, organizations must understand DMARC’s unique benefits and limitations to ensure their inboxes are fully protected. In today’s evolving threat landscape, organizations require a robust, multi-layered approach to stop email threats – in inbound mail and beyond. Email threats have evolved – its time security does too.

Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings. For additional insights check out Darktrace’s 2023 End of Year Threat Report.

Credit to Carlos Gray and Stephen Pickman for their contribution to this blog

Continue reading
About the author
Carlos Gray
Product Manager

Blog

Inside the SOC

Quasar Remote Access Tool: When a Legitimate Admin Tool Falls into the Wrong Hands

Default blog imageDefault blog image
23
Feb 2024

The threat of interoperability

As the “as-a-Service” market continues to grow, indicators of compromise (IoCs) and malicious infrastructure are often interchanged and shared between multiple malware strains and attackers. This presents organizations and their security teams with a new threat: interoperability.

Interoperable threats not only enable malicious actors to achieve their objectives more easily by leveraging existing infrastructure and tools to launch new attacks, but the lack of clear attribution often complicates identification for security teams and incident responders, making it challenging to mitigate and contain the threat.

One such threat observed across the Darktrace customer base in late 2023 was Quasar, a legitimate remote administration tool that has becoming increasingly popular for opportunistic attackers in recent years. Working in tandem, the anomaly-based detection of Darktrace DETECT™ and the autonomous response capabilities of Darktrace RESPOND™ ensured that affected customers were promptly made aware of any suspicious activity on the attacks were contained at the earliest possible stage.

What is Quasar?

Quasar is an open-source remote administration tool designed for legitimate use; however, it has evolved to become a popular tool used by threat actors due to its wide array of capabilities.  

How does Quasar work?

For instance, Quasar can perform keylogging, take screenshots, establish a reverse proxy, and download and upload files on a target device [1].  A report released towards the end of 2023 put Quasar back on threat researchers’ radars as it disclosed the new observation of dynamic-link library (DLL) sideloading being used by malicious versions of this tool to evade detection [1].  DLL sideloading involves configuring legitimate Windows software to run a malicious file rather than the legitimate file it usually calls on as the software loads.  The evolving techniques employed by threat actors using Quasar highlights defenders’ need for anomaly-based detections that do not rely on pre-existing knowledge of attacker techniques, and can identify and alert for unusual behavior, even if it is performed by a legitimate application.

Although Quasar has been used by advanced persistent threat (APT) groups for global espionage operations [2], Darktrace observed the common usage of default configurations for Quasar, which appeared to use shared malicious infrastructure, and occurred alongside other non-compliant activity such as BitTorrent use and cryptocurrency mining.  

Quasar Attack Overview and Darktrace Coverage

Between September and October 2023, Darktrace detected multiple cases of malicious Quasar activity across several customers, suggesting probable campaign activity.  

Quasar infections can be difficult to detect using traditional network or host-based tools due to the use of stealthy techniques such as DLL side-loading and encrypted SSL connections for command-and control (C2) communication, that traditional security tools may not be able to identify.  The wide array of capabilities Quasar possesses also suggests that attacks using this tool may not necessarily be modelled against a linear kill chain. Despite this, the anomaly-based detection of Darktrace DETECT allowed it to identify IoCs related to Quasar at multiple stages of the kill chain.

Quasar Initial Infection

During the initial infection stage of a Quasar compromise observed on the network of one customer, Darktrace detected a device downloading several suspicious DLL and executable (.exe) files from multiple rare external sources using the Xmlst user agent, including the executable ‘Eppzjtedzmk[.]exe’.  Analyzing this file using open-source intelligence (OSINT) suggests this is a Quasar payload, potentially indicating this represented the initial infection through DLL sideloading [3].

Interestingly, the Xmlst user agent used to download the Quasar payload has also been associated with Raccoon Stealer, an information-stealing malware that also acts as a dropper for other malware strains [4][5]. The co-occurrence of different malware components is increasingly common across the threat landscape as MaaS operating models increases in popularity, allowing attackers to employ cross-functional components from different strains.

Figure 1: Cyber AI Analyst Incident summarizing the multiple different downloads in one related incident, with technical details for the Quasar payload included. The incident event for Suspicious File Download is also linked to Possible HTTP Command and Control, suggesting escalation of activity following the initial infection.  

Quasar Establishing C2 Communication

During this phase, devices on multiple customer networks were identified making unusual external connections to the IP 193.142.146[.]212, which was not commonly seen in their networks. Darktrace analyzed the meta-properties of these SSL connections without needing to decrypt the content, to alert the usage of an unusual port not typically associated with the SSL protocol, 4782, and the usage of self-signed certificates.  Self-signed certificates do not provide any trust value and are commonly used in malware communications and ill-reputed web servers.  

Further analysis into these alerts using OSINT indicated that 193.142.146[.]212 is a Quasar C2 server and 4782 is the default port used by Quasar [6][7].  Expanding on the self-signed certificate within the Darktrace UI (see Figure 3) reveals a certificate subject and issuer of “CN=Quasar Server CA”, which is also the default self-signed certificate compiled by Quasar [6].

Figure 2: Cyber AI Analyst Incident summarizing the repeated external connections to a rare external IP that was later associated with Quasar.
Figure 3: Device Event Log of the affected device, showing Darktrace’s analysis of the SSL Certificate associated with SSL connections to 193.142.146[.]212.

A number of insights can be drawn from analysis of the Quasar C2 endpoints detected by Darktrace across multiple affected networks, suggesting a level of interoperability in the tooling used by different threat actors. In one instance, Darktrace detected a device beaconing to the endpoint ‘bittorrents[.]duckdns[.]org’ using the aforementioned “CN=Quasar Server CA” certificate. DuckDNS is a dynamic DNS service that could be abused by attackers to redirect users from their intended endpoint to malicious infrastructure, and may be shared or reused in multiple different attacks.

Figure 4: A device’s Model Event Log, showing the Quasar Server CA SSL certificate used in connections to 41.233.139[.]145 on port 5, which resolves via passive replication to ‘bittorrents[.]duckdns[.]org’.  

The sharing of malicious infrastructure among threat actors is also evident as several OSINT sources have also associated the Quasar IP 193.142.146[.]212, detected in this campaign, with different threat types.

While 193.142.146[.]212:4782 is known to be associated with Quasar, 193.142.146[.]212:8808 and 193.142.146[.]212:6606 have been associated with AsyncRAT [11], and the same IP on port 8848 has been associated with RedLineStealer [12].  Aside from the relative ease of using already developed tooling, threat actors may prefer to use open-source malware in order to avoid attribution, making the true identity of the threat actor unclear to incident responders [1][13].  

Quasar Executing Objectives

On multiple customer deployments affected by Quasar, Darktrace detected devices using BitTorrent and performing cryptocurrency mining. While these non-compliant, and potentially malicious, activities are not necessarily specific IoCs for Quasar, they do suggest that affected devices may have had greater attack surfaces than others.

For instance, one affected device was observed initiating connections to 162.19.139[.]184, a known Minergate cryptomining endpoint, and ‘zayprostofyrim[.]zapto[.]org’, a dynamic DNS endpoint linked to the Quasar Botnet by multiple OSINT vendors [9].

Figure 5: A Darktrace DETECT Event Log showing simultaneous connections to a Quasar endpoint and a cryptomining endpoint 162.19.139[.]184.

Not only does cryptocurrency mining use a significant amount of processing power, potentially disrupting an organization’s business operations and racking up high energy bills, but the software used for this mining is often written to a poor standard, thus increasing the attack surfaces of devices using them. In this instance, Quasar may have been introduced as a secondary payload from a user or attacker-initiated download of cryptocurrency mining malware.

Similarly, it is not uncommon for malicious actors to attach malware to torrented files and there were a number of examples of Darktrace detect identifying non-compliant activity, like BitTorrent connections, overlapping with connections to external locations associated with Quasar. It is therefore important for organizations to establish and enforce technical and policy controls for acceptable use on corporate devices, particularly when remote working introduces new risks.  

Figure 6: A device’s Event Log filtered by Model Breaches, showing a device connecting to BitTorrent shortly before making new or repeated connections to unusual endpoints, which were subsequently associated to Quasar.

In some cases observed by Darktrace, devices affected by Quasar were also being used to perform data exfiltration. Analysis of a period of unusual external connections to the aforementioned Quasar C2 botnet server, ‘zayprostofyrim[.]zapto[.]org’, revealed a small data upload, which may have represented the exfiltration of some data to attacker infrastructure.

Darktrace’s Autonomous Response to Quasar Attacks

On customer networks that had Darktrace RESPOND™ enabled in autonomous response mode, the threat of Quasar was mitigated and contained as soon as it was identified by DETECT. If RESPOND is not configured to respond autonomously, these actions would instead be advisory, pending manual application by the customer’s security team.

For example, following the detection of devices downloading malicious DLL and executable files, Darktrace RESPOND advised the customer to block specific connections to the relevant IP addresses and ports. However, as the device was seen attempting to download further files from other locations, RESPOND also suggested enforced a ‘pattern of life’ on the device, meaning it was only permitted to make connections that were part its normal behavior. By imposing a pattern of life, Darktrace RESPOND ensures that a device cannot perform suspicious behavior, while not disrupting any legitimate business activity.

Had RESPOND been configured to act autonomously, these mitigative actions would have been applied without any input from the customer’s security team and the Quasar compromise would have been contained in the first instance.

Figure 7: The advisory actions Darktrace RESPOND initiated to block specific connections to a malicious IP and to enforce the device’s normal patterns of life in response to the different anomalies detected on the device.

In another case, one customer affected by Quasar did have enabled RESPOND to take autonomous action, whilst also integrating it with a firewall. Here, following the detection of a device connecting to a known Quasar IP address, RESPOND initially blocked it from making connections to the IP via the customer’s firewall. However, as the device continued to perform suspicious activity after this, RESPOND escalated its response by blocking all outgoing connections from the device, effectively preventing any C2 activity or downloads.

Figure 8: RESPOND actions triggered to action via integrated firewall and TCP Resets.

Conclusion

When faced with a threat like Quasar that utilizes the infrastructure and tools of both legitimate services and other malicious malware variants, it is essential for security teams to move beyond relying on existing knowledge of attack techniques when safeguarding their network. It is no longer enough for organizations to rely on past attacks to defend against the attacks of tomorrow.

Crucially, Darktrace’s unique approach to threat detection focusses on the anomaly, rather than relying on a static list of IoCs or "known bads” based on outdated threat intelligence. In the case of Quasar, alternative or future strains of the malware that utilize different IoCs and TTPs would still be identified by Darktrace as anomalous and immediately alerted.

By learning the ‘normal’ for devices on a customer’s network, Darktrace DETECT can recognize the subtle deviations in a device’s behavior that could indicate an ongoing compromise. Darktrace RESPOND is subsequently able to follow this up with swift and targeted actions to contain the attack and prevent it from escalating further.

Credit to Nicole Wong, Cyber Analyst, Vivek Rajan Cyber Analyst

Appendices

Darktrace DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compromise / New or Repeated to Unusual SSL Port
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large Number of Suspicious Failed Connections
  • Unusual Activity / Unusual External Activity

List of IoCs

IP:Port

193.142.146[.]212:4782 -Quasar C2 IP and default port

77.34.128[.]25: 8080 - Quasar C2 IP

Domain

zayprostofyrim[.]zapto[.]org - Quasar C2 Botnet Endpoint

bittorrents[.]duckdns[.]org - Possible Quasar C2 endpoint

Certificate

CN=Quasar Server CA - Default certificate used by Quasar

Executable

Eppzjtedzmk[.]exe - Quasar executable

IP Address

95.214.24[.]244 - Quasar C2 IP

162.19.139[.]184 - Cryptocurrency Miner IP

41.233.139[.]145[VR1] [NW2] - Possible Quasar C2 IP

MITRE ATT&CK Mapping

Command and Control

T1090.002: External Proxy

T1071.001: Web Protocols

T1571: Non-Standard Port

T1001: Data Obfuscation

T1573: Encrypted Channel

T1071: Application Layer Protocol

Resource Development

T1584: Compromise Infrastructure

References

[1] https://thehackernews.com/2023/10/quasar-rat-leverages-dll-side-loading.html

[2] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/cicada-apt10-japan-espionage

[3]https://www.virustotal.com/gui/file/bd275a1f97d1691e394d81dd402c11aaa88cc8e723df7a6aaf57791fa6a6cdfa/community

[4] https://twitter.com/g0njxa/status/1691826188581298389

[5] https://www.linkedin.com/posts/grjk83_raccoon-stealer-announce-return-after-hiatus-activity-7097906612580802560-1aj9

[6] https://community.netwitness.com/t5/netwitness-community-blog/using-rsa-netwitness-to-detect-quasarrat/ba-p/518952

[7] https://www.cisa.gov/news-events/analysis-reports/ar18-352a

[8]https://any.run/report/6cf1314c130a41c977aafce4585a144762d3fb65f8fe493e836796b989b002cb/7ac94b56-7551-4434-8e4f-c928c57327ff

[9] https://threatfox.abuse.ch/ioc/891454/

[10] https://www.virustotal.com/gui/ip-address/41.233.139.145/relations

[11] https://raw.githubusercontent.com/stamparm/maltrail/master/trails/static/malware/asyncrat.txt

[12] https://sslbl.abuse.ch/ssl-certificates/signature/RedLineStealer/

[13] https://www.botconf.eu/botconf-presentation-or-article/hunting-the-quasar-family-how-to-hunt-a-malware-family/

Continue reading
About the author
Nicole Wong
Cyber Security Analyst

Good news for your business.
Bad news for the bad guys.

Start your free trial

Start your free trial

Flexible delivery
Cloud-based deployment.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oops! Something went wrong while submitting the form.

Get a demo

Flexible delivery
You can either install it virtually or with hardware.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.