ブログ
/
Network
/
February 9, 2023

Vidar Network: Analyzing a Prolific Info Stealer

Discover the latest insights on the Vidar network-based info stealer from our Darktrace experts and stay informed on cybersecurity threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2023

In the latter half of 2022, Darktrace observed a rise in Vidar Stealer infections across its client base. These infections consisted in a predictable series of network behaviors, including usage of certain social media platforms for the retrieval of Command and Control (C2) information and usage of certain URI patterns in C2 communications. In the blog post, we will provide details of the pattern of network activity observed in these Vidar Stealer infections, along with details of Darktrace’s coverage of the activity. 

Background on Vidar Stealer

Vidar Stealer, first identified in 2018, is an info-stealer capable of obtaining and then exfiltrating sensitive data from users’ devices. This data includes banking details, saved passwords, IP addresses, browser history, login credentials, and crypto-wallet data [1]. The info-stealer, which is typically delivered via malicious spam emails, cracked software websites, malicious ads, and websites impersonating legitimate brands, is known to access profiles on social media platforms once it is running on a user’s device. The info-stealer does this to retrieve the IP address of its Command and Control (C2) server. After retrieving its main C2 address, the info-stealer, like many other info-stealers, is known to download several third-party Dynamic Link Libraries (DLLs) which it uses to gain access to sensitive data saved on the infected device. The info-stealer then bundles the sensitive data which it obtains and sends it back to the C2 server.  

Details of Attack Chain 

In the second half of 2022, Darktrace observed the following pattern of activity within many client networks:

1. User’s device makes an HTTPS connection to Telegram and/or to a Mastodon server

2. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to an unusual, external endpoint

3. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the unusual, external endpoint

4. User’s device makes an HTTP POST request with an empty User-Agent header, an empty Host header, and the target URI ‘/’ to the unusual, external endpoint 

Figure 1: The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting Telegram and then making a series of HTTP requests to 168.119.167[.]188
Figure 2:  The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting a Mastadon server and then making a series of HTTP requests to 107.189.31[.]171

Each of these activity chains occurred as the result of a user running Vidar Stealer on their device. No common method was used to trick users into running Vidar Stealer on their devices. Rather, a variety of methods, ranging from malspam to cracked software downloads appear to have been used. 

Once running on a user’s device, Vidar Stealer went on to make an HTTPS connection to either Telegram (https://t[.]me/) or a Mastodon server (https://nerdculture[.]de/ or https://ioc[.]exchange/). Telegram and Mastodon are social media platforms on which users can create profiles. Malicious actors are known to create profiles on these platforms and then to embed C2 information within the profiles’ descriptions [2].  In the Vidar cases observed across Darktrace’s client base, it seems that Vidar contacted Telegram and/or Mastodon servers in order to retrieve the IP address of its C2 server from a profile description. Since social media platforms are typically trusted, this ‘Dead Drop’ method of sharing C2 details with malware samples makes it possible for threat actors to regularly update C2 details without the communication of these changes being blocked. 

Figure 3: A screenshot a profile on the Mastodon server, nerdculture[.]de. The profile’s description contains a C2 address 

After retrieving its C2 address from the description of a Telegram or Mastodon profile, Vidar went on to make an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to its C2 server. The sequences of digits appearing in these URIs are campaign IDs. The C2 server responded to Vidar’s GET request with configuration details that likely informed Vidar’s subsequent data stealing activities. 

After receiving its configuration details, Vidar went on to make a GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the C2 server. This request was responded to with a ZIP file containing legitimate, third-party Dynamic Link Libraries such as ‘vcruntime140.dll’. Vidar used these libraries to gain access to sensitive data saved on the infected host. 

Figure 4: The above PCAP provides an example of the configuration details provided by a C2 server in response to Vidar’s first GET request 
Figure 5: Examples of DLLs included within ZIP files downloaded by Vidar samples

After downloading a ZIP file containing third-party DLLs, Vidar made a POST request containing hundreds of kilobytes of data to the C2 endpoint. This POST request likely represented exfiltration of stolen information. 

Darktrace Coverage

After infecting users’ devices, Vidar contacted either Telegram or Mastodon, and then made a series of HTTP requests to its C2 server. The info-stealer’s usage of social media platforms, along with its usage of ZIP files for tool transfer, complicate the detection of its activities. The info-stealer’s HTTP requests to its C2 server, however, caused the following Darktrace DETECT/Network models to breach:

  • Anomalous File / Zip or Gzip from Rare External Location 
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Posting HTTP to IP Without Hostname

These model breaches did not occur due to users’ devices contacting IP addresses known to be associated with Vidar. In fact, at the time that the reported activities occurred, many of the contacted IP addresses had no OSINT associating them with Vidar activity. The cause of these model breaches was in fact the unusualness of the devices’ HTTP activities. When a Vidar-infected device was observed making HTTP requests to a C2 server, Darktrace recognised that this behavior was highly unusual both for the device and for other devices in the network. Darktrace’s recognition of this unusualness caused the model breaches to occur. 

Vidar Stealer infections move incredibly fast, with the time between initial infection and data theft sometimes being less than a minute. In cases where Darktrace’s Autonomous Response technology was active, Darktrace RESPOND/Network was able to autonomously block Vidar’s connections to its C2 server immediately after the first connection was made. 

Figure 6: The Event Log for an infected device, shows that Darktrace RESPOND/Network autonomously intervened 1 second after the device first contacted the C2 server 95.217.245[.]254

Conclusion 

In the latter half of 2022, a particular pattern of activity was prolific across Darktrace’s client base, with the pattern being seen in the networks of customers across a broad range of industry verticals and sizes. Further investigation revealed that this pattern of network activity was the result of Vidar Stealer infection. These infections moved fast and were effective at evading detection due to their usage of social media platforms for information retrieval and their usage of ZIP files for tool transfer. Since the impact of info-stealer activity typically occurs off-network, long after initial infection, insufficient detection of info-stealer activity leaves victims at risk of attackers operating unbeknownst to them and of powerful attack vectors being available to launch broad compromises. 

Despite the evasion attempts made by the operators of Vidar, Darktrace DETECT/Network was able to detect the unusual HTTP activities which inevitably resulted from Vidar infections. When active, Darktrace RESPOND/Network was able to quickly take inhibitive actions against these unusual activities. Given the prevalence of Vidar Stealer [3] and the speed at which Vidar Stealer infections progress, Autonomous Response technology proves to be vital for protecting organizations from info-stealer activity.  

Thanks to the Threat Research Team for its contributions to this blog.

MITRE ATT&CK Mapping

List of IOCs

107.189.31[.]171 - Vidar C2 Endpoint

168.119.167[.]188 – Vidar C2 Endpoint 

77.91.102[.]51 - Vidar C2 Endpoint

116.202.180[.]202 - Vidar C2 Endpoint

79.124.78[.]208 - Vidar C2 Endpoint

159.69.100[.]194 - Vidar C2 Endpoint

195.201.253[.]5 - Vidar C2 Endpoint

135.181.96[.]153 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

135.181.104[.]248 - Vidar C2 Endpoint

159.69.101[.]102 - Vidar C2 Endpoint

45.8.147[.]145 - Vidar C2 Endpoint

159.69.102[.]192 - Vidar C2 Endpoint

193.43.146[.]42 - Vidar C2 Endpoint

159.69.102[.]19 - Vidar C2 Endpoint

185.53.46[.]199 - Vidar C2 Endpoint

116.202.183[.]206 - Vidar C2 Endpoint

95.217.244[.]216 - Vidar C2 Endpoint

78.46.129[.]14 - Vidar C2 Endpoint

116.203.7[.]175 - Vidar C2 Endpoint

45.159.249[.]3 - Vidar C2 Endpoint

159.69.101[.]170 - Vidar C2 Endpoint

116.202.183[.]213 - Vidar C2 Endpoint

116.202.4[.]170 - Vidar C2 Endpoint

185.252.215[.]142 - Vidar C2 Endpoint

45.8.144[.]62 - Vidar C2 Endpoint

74.119.192[.]157 - Vidar C2 Endpoint

78.47.102[.]252 - Vidar C2 Endpoint

212.23.221[.]231 - Vidar C2 Endpoint

167.235.137[.]244 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

5.252.23[.]169 - Vidar C2 Endpoint

45.89.55[.]70 - Vidar C2 Endpoint

References

[1] https://blog.cyble.com/2021/10/26/vidar-stealer-under-the-lens-a-deep-dive-analysis/

[2] https://asec.ahnlab.com/en/44554/

[3] https://blog.sekoia.io/unveiling-of-a-large-resilient-infrastructure-distributing-information-stealers/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ