ブログ
/
Network
/
April 2, 2024

Darktrace's Investigation of Raspberry Robin Worm

Discover how Darktrace is leading the hunt for Raspberry Robin. Explore early insights and strategies in the battle against cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Apr 2024

Introduction

In the face of increasingly hardened digital infrastructures and skilled security teams, malicious actors are forced to constantly adapt their attack methods, resulting in sophisticated attacks that are designed to evade human detection and bypass traditional network security measures.  

One such example that was recently investigated by Darktrace is Raspberry Robin, a highly evasive worm malware renowned for merging existing and novel techniques, as well as leveraging both physical hardware and software, to establish a foothold within organization’s networks and propagate additional malicious payloads.

What is Raspberry Robin?

Raspberry Robin, also known as ‘QNAP worm’, is a worm malware that was initially discovered at the end of 2023 [1], however, its debut in the threat landscape may have predated this, with Microsoft uncovering malicious artifacts linked to this threat (which it tracks under the name Storm-0856) dating back to 2019 [4]. At the time, little was known regarding Raspberry Robin’s objectives or operators, despite the large number of successful infections worldwide. While the identity of the actors behind Raspberry Robin still remains a mystery, more intelligence has been gathered about the malware and its end goals as it was observed delivering payloads from different malware families.

Who does Raspberry Robin target?

While it was initially reported that Raspberry Robin primarily targeted the technology and manufacturing industries, researchers discovered that the malware had actually targeted multiple sectors [3] [4]. Darktrace’s own investigations echoed this, with Raspberry Robin infections observed across various industries, including public administration, finance, manufacturing, retail education and transportation.

How does Raspberry Robin work?

Initially, it appeared that Raspberry Robin's access to compromised networks had not been utilized to deliver final-stage malware payloads, nor to steal corporate data. This uncertainty led researchers to question whether the actors involved were merely “cybercriminals playing around” or more serious threats [3]. This lack of additional exploitation was indeed peculiar, considering that attackers could easily escalate their attacks, given Raspberry Robin’s ability to bypass User Account Control using legitimate Windows tools [4].

However, at the end of July 2022, some clarity emerged regarding the operators' end goals. Microsoft researchers revealed that the access provided by Raspberry Robin was being utilized by an access broker tracked as DEV-0206 to distribute the FakeUpdates malware downloader [2]. Researchers further discovered malicious activity associated with Evil Corp TTPs (i.e., DEV-0243) [5] and payloads from the Fauppod malware family leveraging Raspberry Robin’s access [8]. This indicates that Raspberry Robin may, in fact, be an initial access broker, utilizing its presence on hundreds of infected networks to distribute additional payloads for paying malware operators. Thus far, Raspberry Robin has been observed distributing payloads linked to FIN11, Clop Gang, BumbleBee, IcedID, and TrueBot on compromised networks [12].

Raspberry Robin’s Continued Evolution

Since it first appeared in the wild, Raspberry Robin has evolved from "being a widely distributed worm with no observed post-infection actions [...] to one of the largest malware distribution platforms currently active" [8]. The fact that Raspberry Robin has become such a prevalent threat is likely due to the continual addition of new features and evasion capabilities to their malware [6] [7].  

Since its emergence, the malware has “changed its communication method and lateral movement” [6] in order to evade signature detections based on threat intelligence and previous versions. Endpoint security vendors commonly describe it as heavily obfuscated malware, employing multiple layers of evasion techniques to hinder detection and analysis. These include for example dropping a fake payload when analyzed in a sandboxed environment and using mixed-case executing commands, likely to avoid case-sensitive string-based detections.  

In more recent campaigns, Raspberry Robin further appears to have added a new distribution method as it was observed being downloaded from archive files sent as attachments using the messaging service Discord [11]. These attachments contained a legitimate and signed Windows executable, often abused by attackers for side-loading, alongside a malicious dynamic-link library (DLL) containing a Raspberry Robin sample.

Another reason for the recent success of the malware may be found in its use of one-day exploits. According to researchers, Raspberry Robin now utilizes several local privilege escalation exploits that had been recently disclosed, even before a proof of concept had been made available [9] [10]. This led cyber security professionals to believe that operators of the malware may have access to an exploit seller [6]. The use of these exploits enhances Raspberry Robin's detection evasion and persistence capabilities, enabling it to propagate on networks undetected.

Darktrace’s Coverage of Raspberry Robin

Through two separate investigations carried out by Darktrace’s Threat Research team, first in late 2022 and then in November 2023, it became evident that Raspberry Robin was capable of integrating new functionalities and tactics, techniques and procedures (TTPs) into its attacks. Darktrace DETECT™ provided full visibility over the evolving campaign activity, allowing for a comparison of the threat across both investigations. Additionally, if Darktrace RESPOND™ was enabled on affected networks, it was able to quickly mitigate and contain emerging activity during the initial stages, thwarting the further escalation of attacks.

Raspberry Robin Initial Infection

The most prevalent initial infection vector appears to be the introduction of an infected external drive, such as a USB stick, containing a malicious .LNK file (i.e., a Windows shortcut file) disguised as a thumb drive or network share. When clicked, the LNK file automatically launches cmd.exe to execute the malicious file stored on the external drive, and msiexec.exe to connect to a Raspberry Robin command-and-control (C2) endpoint and download the main malware component. The whole process leverages legitimate Windows processes and is therefore less likely to raise any alarms from more traditional security solutions. However, Darktrace DETECT was able to identify the use of Msiexec to connect to a rare endpoint as anomalous in every case investigated.

Little is currently known regarding how the external drives are infected and distributed, but it has been reported that affected USB drives had previously been used for printing at printing and copying shops, suggesting that the infection may have originated from such stores [13].

A method as simple as leaving an infected USB on a desk in a public location can be a highly effective social engineering tactic for attackers. Exploiting both curiosity and goodwill, unsuspecting individuals may innocently plug in a found USB, hoping to identify its owner, unaware that they have unwittingly compromised their device.

As Darktrace primarily operates on the network layer, the insertion of a USB endpoint device would not be within its visibility. Nevertheless, Darktrace did observe several instances wherein multiple Microsoft endpoints were contacted by compromised devices prior to the first connection to a Raspberry Robin domain. For example, connections to the URI '/fwlink/?LinkID=252669&clcid=0x409' were observed in multiple customer environments prior to the first Raspberry Robin external connection. This connectivity seems to be related to Windows attempting to retrieve information about installed hardware, such as a printer, and could also be related to the inserting of an external USB drive.

Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.
Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.

Raspberry Robin Command-and-Control Activity

In all cases investigated by Darktrace, compromised devices were detected making HTTP GET connections via the unusual port 8080 to Raspberry Robin C2 endpoints using the new user agent 'Windows Installer'.

The C2 hostnames observed were typically short and matched the regex /[a-zA-Z0-9]{2,4}.[a-zA-Z0-9]{2,6}/, and were hosted on various top-level domains (TLD) such as ‘.rocks’, ‘.pm’, and ‘.wf’. On one customer network, Darktrace observed the download of an MSI file from the Raspberry Robin domain ‘wak[.]rocks’. This package contained a heavily protected malicious DLL file whose purpose was unknown at the time.  

However, in September 2022, external researchers revealed that the main purpose of this DLL was to download further payloads and enable lateral movement, persistence and privilege escalation on compromised devices, as well as exfiltrating sensitive information about the device. As worm infections spread through networks automatically, exfiltrating device data is an essential process for threat actor to keep track of which systems have been infected.

On affected networks investigated by Darktrace, compromised devices were observed making C2 connections that contained sensitive device information, including hostnames and credentials, with additional host information likely found within the data packets [12].

Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.
Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.

As for C2 infrastructure, Raspberry Robin leverages compromised Internet of Things (IoT) devices such as QNAP network attached storage (NAS) systems with hijacked DNS settings [13]. NAS devices are data storage servers that provide access to the files they store from anywhere in the world. These features have been abused by Raspberry Robin operators to distribute their malicious payloads, as any uploaded file could be stored and shared easily using NAS features.

However, Darktrace found that QNAP servers are not the only devices being exploited by Raspberry Robin, with DETECT identifying other IoT devices being used as C2 infrastructure, including a Cerio wireless access point in one example. Darktrace recognized that this connection was new to the environment and deemed it as suspicious, especially as it also used new software and an unusual port for the HTTP protocol (i.e., 8080 rather than 80).

In several instances, Darktrace observed Raspberry Robin utilizing TOR exit notes as backup C2 infrastructure, with compromised devices detected connecting to TOR endpoints.

Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.

Raspberry Robin in 2022 vs 2023

Despite the numerous updates and advancements made to Raspberry Robin between the investigations carried out in 2022 and 2023, Darktrace’s detection of the malware was largely the same.

DETECT models breached during first investigation at the end of 2022:

  • Device / New User Agent
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent and New IP
  • Compromise / Suspicious Request Data
  • Compromise / Uncommon Tor Usage
  • Possible Tor Usage

DETECT models breached during second investigation in late 2023:

  • Device / New User Agent and New IP
  • Device / New User Agent and Suspicious Request Data
  • Device / New User Agent
  • Device / Suspicious Domain
  • Possible Tor Usage

Darktrace’s anomaly-based approach to threat detection enabled it to consistently detect the TTPs and IoCs associated with Raspberry Robin across the two investigations, despite the operator’s efforts to make it stealthier and more difficult to analyze.

In the first investigation in late 2022, Darktrace detected affected devices downloading addition executable (.exe) files following connections to the Raspberry Robin C2 endpoint, including a numeric executable file that appeared to be associated with the Vidar information stealer. Considering the advanced evasion techniques and privilege escalation capabilities of Raspberry Robin, early detection is key to prevent the malware from downloading additional malicious payloads.

In one affected customer environment investigated in late 2023, a total of 12 devices were compromised between mid-September and the end of October. As this particular customer did not have Darktrace RESPOND, the Raspberry Robin infection was able to spread through the network unabated until the customer acted upon Darktrace DETECT’s alerts.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have been able to take immediate action following the first observed connection to a Raspberry Robin C2 endpoint, by blocking connections to the suspicious endpoint and enforcing a device’s normal ‘pattern of life’.

By enforcing a pattern of life on an affected device, RESPOND would prevent it from carrying out any activity that deviates from this learned pattern, including connections to new endpoints using new software as was the case in Figure 5, effectively shutting down the attack in the first instance.

Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.
Figure 5: Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.

Conclusion

Raspberry Robin is a highly evasive and adaptable worm known to evolve and change its TTPs on a regular basis in order to remain undetected on target networks for as long as possible. Due to its ability to drop additional malware variants onto compromised devices, it is crucial for organizations and their security teams to detect Raspberry Robin infections at the earliest possible stage to prevent the deployment of potentially disruptive secondary attacks.

Despite its continued evolution, Darktrace's detection of Raspberry Robin remained largely unchanged across the two investigations. Rather than relying on previous IoCs or leveraging existing threat intelligence, Darktrace DETECT’s anomaly-based approach allows it to identify emerging compromises by detecting the subtle deviations in a device’s learned behavior that would typically come with a malware compromise.

By detecting the attacks at an early stage, Darktrace gave its customers full visibility over malicious activity occurring on their networks, empowering them to identify affected devices and remove them from their environments. In cases where Darktrace RESPOND was active, it would have been able to take autonomous follow-up action to halt any C2 communication and prevent the download of any additional malicious payloads.  

Credit to Alexandra Sentenac, Cyber Analyst, Trent Kessler, Senior Cyber Analyst, Victoria Baldie, Director of Incident Management

Appendices

Darktrace DETECT Model Coverage

Device / New User Agent and New IP

Device / New User Agent and Suspicious Request Data

Device / New User Agent

Compromise / Possible Tor Usage

Compromise / Uncommon Tor Usage

MITRE ATT&CK Mapping

Tactic - Technique

Command & Control - T1090.003 Multi-hop Proxy

Lateral Movement - T1210 Exploitation of remote services

Exfiltration over C2 Data - T1041 Exfiltration over C2 Channel

Data Obfuscation - T1001 Data Obfuscation

Vulnerability Scanning - T1595.002 Vulnerability Scanning

Non-Standard Port - T1571 Non-Standard Port

Persistence - T1176 Browser Extensions

Initial Access - T1189 Drive By Compromise / T1566.002  Spearphishing Link

Collection - T1185 Man in the browser

List of IoCs

IoC - Type - Description + Confidence

vqdn[.]net - Hostname - C2 Server

mwgq[.]net - Hostname - C2 Server

wak[.]rocks - Hostname - C2 Server

o7car[.]com - Hostname - C2 Server

6t[.]nz - Hostname - C2 Server

fcgz[.]net - Hostname - Possible C2 Server

d0[.]wf - Hostname - C2 Server

e0[.]wf - Hostname - C2 Server

c4z[.]pl - Hostname - C2 Server

5g7[.]at - Hostname - C2 Server

5ap[.]nl - Hostname - C2 Server

4aw[.]ro - Hostname - C2 Server

0j[.]wf - Hostname - C2 Server

f0[.]tel - Hostname - C2 Server

h0[.]pm - Hostname - C2 Server

y0[.]pm - Hostname - C2 Server

5qy[.]ro - Hostname - C2 Server

g3[.]rs - Hostname - C2 Server

5qe8[.]com - Hostname - C2 Server

4j[.]pm - Hostname - C2 Server

m0[.]yt - Hostname - C2 Server

zk4[.]me - Hostname - C2 Server

59.15.11[.]49 - IP address - Likely C2 Server

82.124.243[.]57 - IP address - C2 Server

114.32.120[.]11 - IP address - Likely C2 Server

203.186.28[.]189 - IP address - Likely C2 Server

70.124.238[.]72 - IP address - C2 Server

73.6.9[.]83 - IP address - Likely C2 Server

References

[1] https://redcanary.com/blog/raspberry-robin/  

[2] https://www.bleepingcomputer.com/news/security/microsoft-links-raspberry-robin-malware-to-evil-corp-attacks/

[3] https://7095517.fs1.hubspotusercontent-na1.net/hubfs/7095517/FLINT%202022-016%20-%20QNAP%20worm_%20who%20benefits%20from%20crime%20(1).pdf

[4] https://www.bleepingcomputer.com/news/security/microsoft-finds-raspberry-robin-worm-in-hundreds-of-windows-networks/

[5] https://therecord.media/microsoft-ties-novel-raspberry-robin-malware-to-evil-corp-cybercrime-syndicate

[6] https://securityaffairs.com/158969/malware/raspberry-robin-1-day-exploits.html

[7] https://research.checkpoint.com/2024/raspberry-robin-keeps-riding-the-wave-of-endless-1-days/

[8] https://redmondmag.com/articles/2022/10/28/microsoft-details-threat-actors-leveraging-raspberry-robin-worm.aspx

[9] https://www.bleepingcomputer.com/news/security/raspberry-robin-malware-evolves-with-early-access-to-windows-exploits/

[10] https://www.bleepingcomputer.com/news/security/raspberry-robin-worm-drops-fake-malware-to-confuse-researchers/

[11] https://thehackernews.com/2024/02/raspberry-robin-malware-upgrades-with.html

[12] https://decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/

[13] https://blog.bushidotoken.net/2023/05/raspberry-robin-global-usb-malware.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ