Blog
/

Inside the SOC

/
September 4, 2022

Steps of a BumbleBee Intrusion to a Cobalt Strike

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Sep 2022
Discover the steps of a Bumblebee intrusion, from initial detection to Cobalt Strike deployment. Learn how Darktrace defends against evolving threats with AI.

Introduction

Throughout April 2022, Darktrace observed several cases in which threat actors used the loader known as ‘BumbleBee’ to install Cobalt Strike Beacon onto victim systems. The threat actors then leveraged Cobalt Strike Beacon to conduct network reconnaissance, obtain account password data, and write malicious payloads across the network. In this article, we will provide details of the actions threat actors took during their intrusions, as well as details of the network-based behaviours which served as evidence of the actors’ activities.  

BumbleBee 

In March 2022, Google’s Threat Analysis Group (TAG) provided details of the activities of an Initial Access Broker (IAB) group dubbed ‘Exotic Lily’ [1]. Before March 2022, Google’s TAG observed Exotic Lily leveraging sophisticated impersonation techniques to trick employees of targeted organisations into downloading ISO disc image files from legitimate file storage services such as WeTransfer. These ISO files contained a Windows shortcut LNK file and a BazarLoader Dynamic Link Library (i.e, DLL). BazarLoader is a member of the Bazar family — a family of malware (including both BazarLoader and BazarBackdoor) with strong ties to the Trickbot malware, the Anchor malware family, and Conti ransomware. BazarLoader, which is typically distributed via email campaigns or via fraudulent call campaigns, has been known to drop Cobalt Strike as a precursor to Conti ransomware deployment [2]. 

In March 2022, Google’s TAG observed Exotic Lily leveraging file storage services to distribute an ISO file containing a DLL which, when executed, caused the victim machine to make HTTP requests with the user-agent string ‘bumblebee’. Google’s TAG consequently called this DLL payload ‘BumbleBee’. Since Google’s discovery of BumbleBee back in March, several threat research teams have reported BumbleBee samples dropping Cobalt Strike [1]/[3]/[4]/[5]. It has also been reported by Proofpoint [3] that other threat actors such as TA578 and TA579 transitioned to BumbleBee in March 2022.  

Interestingly, BazarLoader’s replacement with BumbleBee seems to coincide with the leaking of the Conti ransomware gang’s Jabber chat logs at the end of February 2022. On February 25th, 2022, the Conti gang published a blog post announcing their full support for the Russian state’s invasion of Ukraine [6]. 

Figure 1: The Conti gang's public declaration of their support for Russia's invasion of Ukraine

Within days of sharing their support for Russia, logs from a server hosting the group’s Jabber communications began to be leaked on Twitter by @ContiLeaks [7]. The leaked logs included records of conversations among nearly 500 threat actors between Jan 2020 and March 2022 [8]. The Jabber logs were supposedly stolen and leaked by a Ukrainian security researcher [3]/[6].

Affiliates of the Conti ransomware group were known to use BazarLoader to deliver Conti ransomware [9]. BumbleBee has now also been linked to the Conti ransomware group by several threat research teams [1]/[10]/[11]. The fact that threat actors’ transition from BazarLoader to BumbleBee coincides with the leak of Conti’s Jabber chat logs may indicate that the transition occurred as a result of the leaks [3]. Since the transition, BumbleBee has become a significant tool in the cyber-crime ecosystem, with links to several ransomware operations such as Conti, Quantum, and Mountlocker [11]. The rising use of BumbleBee by threat actors, and particularly ransomware actors, makes the early detection of BumbleBee key to identifying the preparatory stages of ransomware attacks.  

Intrusion Kill Chain 

In April 2022, Darktrace observed the following pattern of threat actor activity within the networks of several Darktrace clients: 

1.     Threat actor socially engineers user via email into running a BumbleBee payload on their device

2.     BumbleBee establishes HTTPS communication with a BumbleBee C2 server

3.     Threat actor instructs BumbleBee to download and execute Cobalt Strike Beacon

4.     Cobalt Strike Beacon establishes HTTPS communication with a Cobalt Strike C2 server

5.     Threat actor instructs Cobalt Strike Beacon to scan for open ports and to enumerate network shares

6.     Threat actor instructs Cobalt Strike Beacon to use the DCSync technique to obtain password account data from an internal domain controller

7.     Threat actor instructs Cobalt Strike Beacon to distribute malicious payloads to other internal systems 

With limited visibility over affected clients’ email environments, Darktrace was unable to determine how the threat actors interacted with users to initiate the BumbleBee infection. However, based on open-source reporting on BumbleBee [3]/[4]/[10]/[11]/[12]/[13]/[14]/[15]/[16]/[17], it is likely that the actors tricked target users into running BumbleBee by sending them emails containing either a malicious zipped ISO file or a link to a file storage service hosting the malicious zipped ISO file. These ISO files typically contain a LNK file and a BumbleBee DLL payload. The properties of these LNK files are set in such a way that opening them causes the corresponding DLL payload to run. 

In several cases observed by Darktrace, devices contacted a file storage service such as Microsoft OneDrive or Google Cloud Storage immediately before they displayed signs of BumbleBee infection. In these cases, it is likely that BumbleBee was executed on the users’ devices as a result of the users interacting with an ISO file which they were tricked into downloading from a file storage service. 

Figure 2: The above figure, taken from the event log for an infected device, shows that the device contacted a OneDrive endpoint immediately before making HTTPS connections to the BumbleBee C2 server, 45.140.146[.]244
Figure 3: The above figure, taken from the event log for an infected device, shows that the device contacted a Google Cloud Storage endpoint and then the malicious endpoint ‘marebust[.]com’ before making HTTPS connections to the  BumbleBee C2 servers, 108.62.118[.]61 and 23.227.198[.]217

After users ran a BumbleBee payload, their devices immediately initiated communications with BumbleBee C2 servers. The BumbleBee samples used HTTPS for their C2 communication, and all presented a common JA3 client fingerprint, ‘0c9457ab6f0d6a14fc8a3d1d149547fb’. All analysed samples excluded domain names in their ‘client hello’ messages to the C2 servers, which is unusual for legitimate HTTPS communication. External SSL connections which do not specify a destination domain name and whose JA3 client fingerprint is ‘0c9457ab6f0d6a14fc8a3d1d149547fb’ are potential indicators of BumbleBee infection. 

Figure 4:The above figure, taken from Darktrace's Advanced Search interface, depicts an infected device's spike in HTTPS connections with the JA3 client fingerprint ‘0c9457ab6f0d6a14fc8a3d1d149547fb’

Once the threat actors had established HTTPS communication with the BumbleBee-infected systems, they instructed BumbleBee to download and execute Cobalt Strike Beacon. This behaviour resulted in the infected systems making HTTPS connections to Cobalt Strike C2 servers. The Cobalt Strike Beacon samples all had the same JA3 client fingerprint ‘a0e9f5d64349fb13191bc781f81f42e1’ — a fingerprint associated with previously seen Cobalt Strike samples [18]. The domain names ‘fuvataren[.]com’ and ‘cuhirito[.]com’ were observed in the samples’ HTTPS communications. 

Figure 5:The above figure, taken from Darktrace's Advanced Search interface, depicts the Cobalt Strike C2 communications which immediately followed a device's BumbleBee C2 activity

Cobalt Strike Beacon payloads call home to C2 servers for instructions. In the cases observed, threat actors first instructed the Beacon payloads to perform reconnaissance tasks, such as SMB port scanning and SMB enumeration. It is likely that the threat actors performed these steps to inform the next stages of their operations.  The SMB enumeration activity was evidenced by the infected devices making NetrShareEnum and NetrShareGetInfo requests to the srvsvc RPC interface on internal systems.

Figure 6: The above figure, taken from Darktrace’s Advanced Search interface, depicts a spike in srvsvc requests coinciding with the infected device's Cobalt Strike C2 activity

After providing Cobalt Strike Beacon with reconnaissance tasks, the threat actors set out to obtain account password data in preparation for the lateral movement phase of their operation. To obtain account password data, the actors instructed Cobalt Strike Beacon to use the DCSync technique to replicate account password data from an internal domain controller. This activity was evidenced by the infected devices making DRSGetNCChanges requests to the drsuapi RPC interface on internal domain controllers. 

Figure 7: The above figure, taken from Darktrace’s Advanced Search interface, depicts a spike in DRSGetNCChanges requests coinciding with the infected device’s Cobalt Strike C2 activity

After leveraging the DCSync technique, the threat actors sought to broaden their presence within the targeted networks.  To achieve this, they instructed Cobalt Strike Beacon to get several specially selected internal systems to run a suspiciously named DLL (‘f.dll’). Cobalt Strike first established SMB sessions with target systems using compromised account credentials. During these sessions, Cobalt Strike uploaded the malicious DLL to a hidden network share. To execute the DLL, Cobalt Strike abused the Windows Service Control Manager (SCM) to remotely control and manipulate running services on the targeted internal hosts. Cobalt Strike first opened a binding handle to the svcctl interface on the targeted destination systems. It then went on to make an OpenSCManagerW request, a CreateServiceA request, and a StartServiceA request to the svcctl interface on the targeted hosts: 

·      Bind request – opens a binding handle to the relevant RPC interface (in this case, the svcctl interface) on the destination device

·      OpenSCManagerW request – establishes a connection to the Service Control Manager (SCM) on the destination device and opens a specified SCM database

·      CreateServiceA request – creates a service object and adds it to the specified SCM database 

·      StartServiceA request – starts a specified service

Figure 8: The above figure, taken from Darktrace’s Advanced Search interface, outlines an infected system’s lateral movement activities. After writing a file named ‘f.dll’ to the C$ share on an internal server, the infected device made several RPC requests to the svcctl interface on the targeted server

It is likely that the DLL file which the threat actors distributed was a Cobalt Strike payload. In one case, however, the threat actor was also seen distributing and executing a payload named ‘procdump64.exe’. This may suggest that the threat actor was seeking to use ProcDump to obtain authentication material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). Given that ProcDump is a legitimate Windows Sysinternals tool primarily used for diagnostics and troubleshooting, it is likely that threat actors leveraged it in order to evade detection. 

In all the cases which Darktrace observed, threat actors’ attempts to conduct follow-up activities after moving laterally were thwarted with the help of Darktrace’s SOC team. It is likely that the threat actors responsible for the reported activities were seeking to deploy ransomware within the targeted networks. The steps which the threat actors took to make progress towards achieving this objective resulted in highly unusual patterns of network traffic. Darktrace’s detection of these unusual network activities allowed security teams to prevent these threat actors from achieving their disruptive objectives. 

Darktrace Coverage

Once threat actors succeeded in tricking users into running BumbleBee on their devices, Darktrace’s Self-Learning AI immediately detected the command-and-control (C2) activity generated by the loader. BumbleBee’s C2 activity caused the following Darktrace models to breach:

·      Anomalous Connection / Anomalous SSL without SNI to New External

·      Anomalous Connection / Suspicious Self-Signed SSL

·      Anomalous Connection / Rare External SSL Self-Signed

·      Compromise / Suspicious TLS Beaconing To Rare External

·      Compromise / Beacon to Young Endpoint

·      Compromise / Beaconing Activity To External Rare

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / Suspicious TLS Beaconing To Rare External

·      Compromise / SSL Beaconing to Rare Destination

·      Compromise / Large Number of Suspicious Successful Connections

·      Device / Multiple C2 Model Breaches 

BumbleBee’s delivery of Cobalt Strike Beacon onto target systems resulted in those systems communicating with Cobalt Strike C2 servers. Cobalt Strike Beacon’s C2 communications resulted in breaches of the following models: 

·      Compromise / Beaconing Activity To External Rare

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / SSL or HTTP Beacon

·      Compromise / Slow Beaconing Activity To External Rare

·      Compromise / SSL Beaconing to Rare Destination 

The threat actors’ subsequent port scanning and SMB enumeration activities caused the following models to breach:

·      Device / Network Scan

·      Anomalous Connection / SMB Enumeration

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / Suspicious Network Scan Activity  

The threat actors’ attempts to obtain account password data from domain controllers using the DCSync technique resulted in breaches of the following models: 

·      Compromise / Unusual SMB Session and DRS

·      Anomalous Connection / Anomalous DRSGetNCChanges Operation

Finally, the threat actors’ attempts to internally distribute and execute payloads resulted in breaches of the following models:

·      Compliance / SMB Drive Write

·      Device / Lateral Movement and C2 Activity

·      Device / SMB Lateral Movement

·      Device / Multiple Lateral Movement Model Breaches

·      Anomalous File / Internal / Unusual SMB Script Write

·      Anomalous File / Internal / Unusual Internal EXE File Transfer

·      Anomalous Connection / High Volume of New or Uncommon Service Control

If Darktrace/Network had been configured in the targeted environments, then it would have blocked BumbleBee’s C2 communications, which would have likely prevented the threat actors from delivering Cobalt Strike Beacon into the target networks. 

Figure 9: Attack timeline

Conclusion

Threat actors use loaders to smuggle more harmful payloads into target networks. Prior to March 2022, it was common to see threat actors using the BazarLoader loader to transfer their payloads into target environments. However, since the public disclosure of the Conti gang’s Jabber chat logs at the end of February, the cybersecurity world has witnessed a shift in tradecraft. Threat actors have seemingly transitioned from using BazarLoader to using a novel loader known as ‘BumbleBee’. Since BumbleBee first made an appearance in March 2022, a growing number of threat actors, in particular ransomware actors, have been observed using it.

It is likely that this trend will continue, which makes the detection of BumbleBee activity vital for the prevention of ransomware deployment within organisations’ networks. During April, Darktrace’s SOC team observed a particular pattern of threat actor activity involving the BumbleBee loader. After tricking users into running BumbleBee on their devices, threat actors were seen instructing BumbleBee to drop Cobalt Strike Beacon. Threat actors then leveraged Cobalt Strike Beacon to conduct network reconnaissance, obtain account password data from internal domain controllers, and distribute malicious payloads internally.  Darktrace’s detection of these activities prevented the threat actors from achieving their likely harmful objectives.  

Thanks to Ross Ellis for his contributions to this blog.

Appendices 

References 

[1] https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/ 

[2] https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/ 

[3] https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming

[4] https://www.cynet.com/orion-threat-alert-flight-of-the-bumblebee/ 

[5] https://research.nccgroup.com/2022/04/29/adventures-in-the-land-of-bumblebee-a-new-malicious-loader/ 

[6] https://www.bleepingcomputer.com/news/security/conti-ransomwares-internal-chats-leaked-after-siding-with-russia/ 

[7] https://therecord.media/conti-leaks-the-panama-papers-of-ransomware/ 

[8] https://www.secureworks.com/blog/gold-ulrick-leaks-reveal-organizational-structure-and-relationships 

[9] https://www.prodaft.com/m/reports/Conti_TLPWHITE_v1.6_WVcSEtc.pdf 

[10] https://www.kroll.com/en/insights/publications/cyber/bumblebee-loader-linked-conti-used-in-quantum-locker-attacks 

[11] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/bumblebee-loader-cybercrime 

[12] https://isc.sans.edu/diary/TA578+using+thread-hijacked+emails+to+push+ISO+files+for+Bumblebee+malware/28636 

[13] https://isc.sans.edu/diary/rss/28664 

[14] https://www.logpoint.com/wp-content/uploads/2022/05/buzz-of-the-bumblebee-a-new-malicious-loader-threat-report-no-3.pdf 

[15] https://ghoulsec.medium.com/mal-series-23-malware-loader-bumblebee-6ab3cf69d601 

[16]  https://blog.cyble.com/2022/06/07/bumblebee-loader-on-the-rise/  

[17]  https://asec.ahnlab.com/en/35460/ 

[18] https://thedfirreport.com/2021/07/19/icedid-and-cobalt-strike-vs-antivirus/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 14, 2025

/

Ransomware

RansomHub Ransomware: Darktrace’s Investigation of the Newest Tool in ShadowSyndicate's Arsenal

Default blog imageDefault blog image

What is ShadowSyndicate?

ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].

What is RansomHub?

First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].

ShadowSyndicate and RansomHub

External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].

Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].

In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.

Darktrace’s coverage of ShadowSyndicate and RansomHub

Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.

Attack Overview

Timeline attack overview of ransomhub ransomware

Internal Reconnaissance

The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.

C2 Communication and Data Exfiltration

In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.

Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.

Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.

Lateral Movement

In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.

The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.

Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.
Figure 1: Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.

Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.

File Encryption

Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.

Figure 2: The graph shows the behavior of a device with encryption activity, using the “SMB Sustained Mimetype Conversion” and “Unusual Activity Events” metrics over three weeks.

Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.

Figure 3: Cyber AI Analyst panel showing the critical incidents of the affected device from one of the cases investigated.

In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.

Figure 4: A list of suggested Autonomous Response actions on the affected devices."

Conclusion

The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.

For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.

Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)

Appendices

Darktrace Model Detections

Antigena Models / Autonomous Response:

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / External Threat / Antigena File then New Outbound Block


Network Reconnaissance:

Device / Network Scan

Device / ICMP Address Scan

Device / RDP Scan
Device / Anomalous LDAP Root Searches
Anomalous Connection / SMB Enumeration
Device / Spike in LDAP Activity

C2:

Enhanced Monitoring - Device / Lateral Movement and C2 Activity

Enhanced Monitoring - Device / Initial Breach Chain Compromise

Enhanced Monitoring - Compromise / Suspicious File and C2

Compliance / Remote Management Tool On Server

Anomalous Connection / Outbound SSH to Unusual Port


External Data Transfer:

Enhanced Monitoring - Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Compliance / SSH to Rare External Destination

Anomalous Connection / Application Protocol on Uncommon Port

Enhanced Monitoring - Anomalous File / Numeric File Download

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous Server Activity / Outgoing from Server

Device / Large Number of Connections to New Endpoints

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Lateral Movement:

User / New Admin Credentials on Server

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous File / Internal / Executable Uploaded to DC

Anomalous Connection / Suspicious Activity On High Risk Device

File Encryption:

Compliance / SMB Drive Write

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Anomalous Connection / Suspicious Read Write Ratio

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

83.97.73[.]198 - IP - Data exfiltration endpoint

108.181.182[.]143 - IP - Data exfiltration endpoint

46.161.27[.]151 - IP - Data exfiltration endpoint

185.65.212[.]164 - IP - Data exfiltration endpoint

66[.]203.125.21 - IP - MEGA endpoint used for data exfiltration

89[.]44.168.207 - IP - MEGA endpoint used for data exfiltration

185[.]206.24.31 - IP - MEGA endpoint used for data exfiltration

31[.]216.148.33 - IP - MEGA endpoint used for data exfiltration

104.226.39[.]18 - IP - C2 endpoint

103.253.40[.]87 - IP - C2 endpoint

*.relay.splashtop[.]com - Hostname - C2 & data exfiltration endpoint

gfs***n***.userstorage.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

w.api.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

ams-rb9a-ss.ams.efscloud[.]net - Hostname - Data exfiltration endpoint

MITRE ATT&CK Mapping

Tactic - Technqiue

RECONNAISSANCE – T1592.004 Client Configurations

RECONNAISSANCE – T1590.005 IP Addresses

RECONNAISSANCE – T1595.001 Scanning IP Blocks

RECONNAISSANCE – T1595.002 Vulnerability Scanning

DISCOVERY – T1046 Network Service Scanning

DISCOVERY – T1018 Remote System Discovery

DISCOVERY – T1083 File and Directory Discovery
INITIAL ACCESS - T1189 Drive-by Compromise

INITIAL ACCESS - T1190 Exploit Public-Facing Application

COMMAND AND CONTROL - T1001 Data Obfuscation

COMMAND AND CONTROL - T1071 Application Layer Protocol

COMMAND AND CONTROL - T1071.001 Web Protocols

COMMAND AND CONTROL - T1573.001 Symmetric Cryptography

COMMAND AND CONTROL - T1571 Non-Standard Port

DEFENSE EVASION – T1078 Valid Accounts

DEFENSE EVASION – T1550.002 Pass the Hash

LATERAL MOVEMENT - T1021.004 SSH

LATERAL MOVEMENT – T1080 Taint Shared Content

LATERAL MOVEMENT – T1570 Lateral Tool Transfer

LATERAL MOVEMENT – T1021.002 SMB/Windows Admin Shares

COLLECTION - T1185 Man in the Browser

EXFILTRATION - T1041 Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 Exfiltration to Cloud Storage

EXFILTRATION - T1029 Scheduled Transfer

IMPACT – T1486 Data Encrypted for Impact

References

1.     https://www.group-ib.com/blog/shadowsyndicate-raas/

2.     https://www.techtarget.com/searchsecurity/news/366617096/ESET-RansomHub-most-active-ransomware-group-in-H2-2024

3.     https://cyberint.com/blog/research/ransomhub-the-new-kid-on-the-block-to-know/

4.     https://www.cisa.gov/sites/default/files/2024-05/AA24-131A.stix_.xml

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore

Blog

/

January 14, 2025

/

Email

Why AI-powered Email Protection Became Essential for this Global Financial Services Leader

Default blog imageDefault blog image

When agile cyber-attackers don’t stop, but pivot  

When he first joined this leading financial services provider, it was clear to the CISO that email security needed to be a top priority. The organization provides transfer services to millions of consumers via a network of thousands of agent locations across the US. Those agents are connected to hundreds of thousands of global payers to complete consumer transfers, ranging from leading financial institutions to small local businesses.

With this vast network of agents and payers, the provider relies on email as its primary communications channel. Transmitting billions of dollars every year, the organization is a prime target for cyber criminals looking to steal credentials, financial assets, and sensitive data.

Vulnerable to attacks with gaps in email security and visibility

The CISO discovered that employees were under constant attack by phishing emails impersonating his company’s own executives. The business email compromise (BEC) attacks were designed to deceive employees into sharing credentials or clicking on malicious links.

Upon discovering that their Microsoft 365 tenant lacked secure configuration, the CISO implemented necessary changes to strengthen the service, including enabling authentication controls. While his efforts significantly reduced BEC attacks, cyber criminals changed their tactics, sending employees malicious phishing emails from seemingly valid email accounts from trusted domains like Google and Yahoo. The emails passed through the organization’s native email filters without detection.

The CISO also sought to strengthen defenses against third-party supply chain attacks that could originate with any of the hundreds of thousands of third-party agents and payers the company works with around the world. While the larger institutions typically have sophisticated email security strategies in place, the smaller businesses may lack the cybersecurity expertise needed to effectively secure and manage their data, putting the organization at risk.

While the CISO knew the company was vulnerable to phishing and third-party threats, he didn’t have visibility across the flow of email. Without access to key metrics and valuable data, he couldn’t get the crucial insights needed to quickly identify possible threats and adjust security protocols.  

Skilled analysts bogged down with low-level tasks

Like many enterprise organizations, this leading financial services provider relied on a crew of highly skilled analysts to respond to alerts and analyze and triage emails most of their workday. “That shouldn’t be how we operate,” said the CISO. “My role and the role of my staff should be to focus on more strategic projects, support the business, and work on important new product development.”

Balancing user experience with mitigating threats

Enabling greater email security measures without negatively impacting the business, user experience, and customer satisfaction was a daunting challenge the CISO and his security team faced. Imposing restrictions that are too stringent could restrict communication, delay the delivery of important messages, or block legitimate emails – potentially slowing down money transfers, frustrating customers, affecting employee productivity, and impacting revenue. However, maintaining controls that are too permissive could result in serious outcomes like data theft, financial fraud, operational disruption, compliance penalties, and customer attrition.  

Self-Learning AI is a game changer

After conducting a thorough POC with several modern security solution providers, this global financial services provider chose the Darktrace / EMAIL an AI-driven email security platform. The CISO said they chose the solution for two key reasons:

First, Darktrace / EMAIL offers modern capabilities

  • Self-Learning AI uses business data to recognize anomalies in communication patterns and user behavior to stop known and unknown threats
  • Secures the organization’s entire mailflow across all inbound, outbound, and lateral email
  • Protects against account takeover attacks by identifying subtle anomalies in cloud SaaS
  • Catches sophisticated threats like impersonations, session token misuse, adversary-in-the-middle attacks, credential theft, and data exfiltration

Second, they pointed to Darktrace’s experience, innovation, and expertise

  • Deep cybersecurity and industry knowledge
  • Demonstrated customers successes worldwide
  • At the forefront of innovation and research, establishing new thresholds in cybersecurity, with technology advances backed by over 200 patents and pending applications

Moreover, and most importantly, this organization trusted Darktrace to deliver on its promises.  And according to the CISO, that’s just what happened.

Significantly reduced phishing threats and business risk

Since implementing Darktrace / EMAIL, the threat posed by BEC attacks has dropped sharply. “Phishing is not an issue that concerns me anymore. I estimate we are now identifying and blocking more than 85% of threats our previous solution was missing,” said the CISO. The biggest factor contributing to this success? The power of AI.

With Darktrace / EMAIL, this leadingglobal financial services provider is identifying and blocking more than 85% ofthe phishing email threats its previous solution missed.

AI wasn’t originally on the financial service provider’s list of criteria. But after seeing AI in action and understanding its potential to vastly scale their detection and response capabilities–without adding headcount, the CISO determined AI wasn’t an option but an imperative. “AI is essential when it comes to email security, it’s an absolute necessity,” he said.  

Darktrace / EMAIL’s Self-Learning AI is uniquely powerful because it learns the content and context of every internal and external user and can spot the subtle differences in behavioral patterns that point to possible social engineering attacks. Through patented behavioral anomaly detection, Darktrace / EMAIL continuously learns about the organization’s business and users, based on its own operations and data, adjusting security protocols accordingly.  

For example, when clients are transferring large amounts of money, they are required to send photos of their driver’s licenses and passports via email to the organization for verification – accounting for a large percentage of its’ inbound email. Darktrace / EMAIL recognizes that it’s normal for customers to send this sensitive information, and it also knows that it’s not normal for that same sensitive information to leave the organization via outbound mail. In addition, Darktrace identifies patterns in user behavior, including who employees communicate with and what kind of information they share. When user behavior falls outside of established norms, such as an email sent from the CFO to employees the CEO would not typically communicate with, Darktrace can take the appropriate action to remove the threat.  

“After the implementation, we gave the solution two weeks to ingest our data and learn the specifics of our business. After that, it was perfect, just amazing,” said the CISO.  

Boosted team productivity and elevated value to the business

With Darktrace / EMAIL, the organization has successfully scaled its detection and response efforts without scaling personnel. The security team has reduced the number of emails requiring manual investigation by 90%. And because analysts now have the benefit of Darktrace / EMAIL’s analytics and reporting, the investigation process is much easier and faster. “The impact of this solution on my team has been very positive,” said the CISO. “Darktrace / EMAIL essentially manages itself, freeing up time for our skilled analysts–and for myself–to focus on more important projects.”  

The security team has scaled its detection and response efforts without scaling personnel,reducing the number of emails it manually investigates by 90%

Increased visibility delivers business-critical insights

You can’t control what you can’t see, and with zero visibility into critical data and metrics, this financial services provider was at a serious disadvantage. That has all changed. “Something that I love about Darktrace / EMAIL is the visibility that it provides into key metrics from a single dashboard. We can now understand the behavior of our email flow and data traffic and can make insight-driven decisions to continuously optimize our email security. It’s awesome,” said the CISO.  

An efficient user interface also improves productivity and reduces mean time to action by enabling teams to easily visualize key data points and quickly evaluate what actions need to be taken. Darktrace / EMAIL was developed with that experience in mind, allowing users to access data and take quick action without having to constantly log into the solution.

Keeping the business focused on cybersecurity

The leadership of this global organization takes information security very seriously, understanding that cyber-attacks aren’t just an IT problem but a business problem. When it came to evaluating Darktrace, the CISO said numerous stakeholders were involved including C-level executives, infrastructure, and IT, which operates separately from information security. The CISO initially identified the need, conducted the market research, engaged the target vendors, and then brought the other decision makers into the process for the solution evaluation and final decision. “Our IT group, infrastructure team, CTO and CEO are all involved when it comes to making major cybersecurity investments. We always try to make these decisions jointly to ensure we are taking everything into consideration.”

The organization has reached a higher level of maturity when it comes to email cybersecurity. The ability to automate routine email detection and investigation tasks has both strengthened the organization’s cyber resilience and enabled the CISO and his team to contribute more to the business. His advice for other IT leaders facing the same email security and visibility challenges he once experienced: “For those companies that need greater insight and control over their email but have limited resources and people, AI is the answer.”  

Darktrace / Email solution brief screenshot

Secure Your Inbox with Cutting-Edge AI Email Protection

Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.

  • Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
  • Experience 20-25% more threat blocking power with Darktrace / EMAIL
  • Stop the 58% of threats bypassing traditional email security

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI