Blog
/

Inside the SOC

/
September 4, 2022

Steps of a BumbleBee Intrusion to a Cobalt Strike

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Sep 2022
Discover the steps of a Bumblebee intrusion, from initial detection to Cobalt Strike deployment. Learn how Darktrace defends against evolving threats with AI.

Introduction

Throughout April 2022, Darktrace observed several cases in which threat actors used the loader known as ‘BumbleBee’ to install Cobalt Strike Beacon onto victim systems. The threat actors then leveraged Cobalt Strike Beacon to conduct network reconnaissance, obtain account password data, and write malicious payloads across the network. In this article, we will provide details of the actions threat actors took during their intrusions, as well as details of the network-based behaviours which served as evidence of the actors’ activities.  

BumbleBee 

In March 2022, Google’s Threat Analysis Group (TAG) provided details of the activities of an Initial Access Broker (IAB) group dubbed ‘Exotic Lily’ [1]. Before March 2022, Google’s TAG observed Exotic Lily leveraging sophisticated impersonation techniques to trick employees of targeted organisations into downloading ISO disc image files from legitimate file storage services such as WeTransfer. These ISO files contained a Windows shortcut LNK file and a BazarLoader Dynamic Link Library (i.e, DLL). BazarLoader is a member of the Bazar family — a family of malware (including both BazarLoader and BazarBackdoor) with strong ties to the Trickbot malware, the Anchor malware family, and Conti ransomware. BazarLoader, which is typically distributed via email campaigns or via fraudulent call campaigns, has been known to drop Cobalt Strike as a precursor to Conti ransomware deployment [2]. 

In March 2022, Google’s TAG observed Exotic Lily leveraging file storage services to distribute an ISO file containing a DLL which, when executed, caused the victim machine to make HTTP requests with the user-agent string ‘bumblebee’. Google’s TAG consequently called this DLL payload ‘BumbleBee’. Since Google’s discovery of BumbleBee back in March, several threat research teams have reported BumbleBee samples dropping Cobalt Strike [1]/[3]/[4]/[5]. It has also been reported by Proofpoint [3] that other threat actors such as TA578 and TA579 transitioned to BumbleBee in March 2022.  

Interestingly, BazarLoader’s replacement with BumbleBee seems to coincide with the leaking of the Conti ransomware gang’s Jabber chat logs at the end of February 2022. On February 25th, 2022, the Conti gang published a blog post announcing their full support for the Russian state’s invasion of Ukraine [6]. 

Figure 1: The Conti gang's public declaration of their support for Russia's invasion of Ukraine

Within days of sharing their support for Russia, logs from a server hosting the group’s Jabber communications began to be leaked on Twitter by @ContiLeaks [7]. The leaked logs included records of conversations among nearly 500 threat actors between Jan 2020 and March 2022 [8]. The Jabber logs were supposedly stolen and leaked by a Ukrainian security researcher [3]/[6].

Affiliates of the Conti ransomware group were known to use BazarLoader to deliver Conti ransomware [9]. BumbleBee has now also been linked to the Conti ransomware group by several threat research teams [1]/[10]/[11]. The fact that threat actors’ transition from BazarLoader to BumbleBee coincides with the leak of Conti’s Jabber chat logs may indicate that the transition occurred as a result of the leaks [3]. Since the transition, BumbleBee has become a significant tool in the cyber-crime ecosystem, with links to several ransomware operations such as Conti, Quantum, and Mountlocker [11]. The rising use of BumbleBee by threat actors, and particularly ransomware actors, makes the early detection of BumbleBee key to identifying the preparatory stages of ransomware attacks.  

Intrusion Kill Chain 

In April 2022, Darktrace observed the following pattern of threat actor activity within the networks of several Darktrace clients: 

1.     Threat actor socially engineers user via email into running a BumbleBee payload on their device

2.     BumbleBee establishes HTTPS communication with a BumbleBee C2 server

3.     Threat actor instructs BumbleBee to download and execute Cobalt Strike Beacon

4.     Cobalt Strike Beacon establishes HTTPS communication with a Cobalt Strike C2 server

5.     Threat actor instructs Cobalt Strike Beacon to scan for open ports and to enumerate network shares

6.     Threat actor instructs Cobalt Strike Beacon to use the DCSync technique to obtain password account data from an internal domain controller

7.     Threat actor instructs Cobalt Strike Beacon to distribute malicious payloads to other internal systems 

With limited visibility over affected clients’ email environments, Darktrace was unable to determine how the threat actors interacted with users to initiate the BumbleBee infection. However, based on open-source reporting on BumbleBee [3]/[4]/[10]/[11]/[12]/[13]/[14]/[15]/[16]/[17], it is likely that the actors tricked target users into running BumbleBee by sending them emails containing either a malicious zipped ISO file or a link to a file storage service hosting the malicious zipped ISO file. These ISO files typically contain a LNK file and a BumbleBee DLL payload. The properties of these LNK files are set in such a way that opening them causes the corresponding DLL payload to run. 

In several cases observed by Darktrace, devices contacted a file storage service such as Microsoft OneDrive or Google Cloud Storage immediately before they displayed signs of BumbleBee infection. In these cases, it is likely that BumbleBee was executed on the users’ devices as a result of the users interacting with an ISO file which they were tricked into downloading from a file storage service. 

Figure 2: The above figure, taken from the event log for an infected device, shows that the device contacted a OneDrive endpoint immediately before making HTTPS connections to the BumbleBee C2 server, 45.140.146[.]244
Figure 3: The above figure, taken from the event log for an infected device, shows that the device contacted a Google Cloud Storage endpoint and then the malicious endpoint ‘marebust[.]com’ before making HTTPS connections to the  BumbleBee C2 servers, 108.62.118[.]61 and 23.227.198[.]217

After users ran a BumbleBee payload, their devices immediately initiated communications with BumbleBee C2 servers. The BumbleBee samples used HTTPS for their C2 communication, and all presented a common JA3 client fingerprint, ‘0c9457ab6f0d6a14fc8a3d1d149547fb’. All analysed samples excluded domain names in their ‘client hello’ messages to the C2 servers, which is unusual for legitimate HTTPS communication. External SSL connections which do not specify a destination domain name and whose JA3 client fingerprint is ‘0c9457ab6f0d6a14fc8a3d1d149547fb’ are potential indicators of BumbleBee infection. 

Figure 4:The above figure, taken from Darktrace's Advanced Search interface, depicts an infected device's spike in HTTPS connections with the JA3 client fingerprint ‘0c9457ab6f0d6a14fc8a3d1d149547fb’

Once the threat actors had established HTTPS communication with the BumbleBee-infected systems, they instructed BumbleBee to download and execute Cobalt Strike Beacon. This behaviour resulted in the infected systems making HTTPS connections to Cobalt Strike C2 servers. The Cobalt Strike Beacon samples all had the same JA3 client fingerprint ‘a0e9f5d64349fb13191bc781f81f42e1’ — a fingerprint associated with previously seen Cobalt Strike samples [18]. The domain names ‘fuvataren[.]com’ and ‘cuhirito[.]com’ were observed in the samples’ HTTPS communications. 

Figure 5:The above figure, taken from Darktrace's Advanced Search interface, depicts the Cobalt Strike C2 communications which immediately followed a device's BumbleBee C2 activity

Cobalt Strike Beacon payloads call home to C2 servers for instructions. In the cases observed, threat actors first instructed the Beacon payloads to perform reconnaissance tasks, such as SMB port scanning and SMB enumeration. It is likely that the threat actors performed these steps to inform the next stages of their operations.  The SMB enumeration activity was evidenced by the infected devices making NetrShareEnum and NetrShareGetInfo requests to the srvsvc RPC interface on internal systems.

Figure 6: The above figure, taken from Darktrace’s Advanced Search interface, depicts a spike in srvsvc requests coinciding with the infected device's Cobalt Strike C2 activity

After providing Cobalt Strike Beacon with reconnaissance tasks, the threat actors set out to obtain account password data in preparation for the lateral movement phase of their operation. To obtain account password data, the actors instructed Cobalt Strike Beacon to use the DCSync technique to replicate account password data from an internal domain controller. This activity was evidenced by the infected devices making DRSGetNCChanges requests to the drsuapi RPC interface on internal domain controllers. 

Figure 7: The above figure, taken from Darktrace’s Advanced Search interface, depicts a spike in DRSGetNCChanges requests coinciding with the infected device’s Cobalt Strike C2 activity

After leveraging the DCSync technique, the threat actors sought to broaden their presence within the targeted networks.  To achieve this, they instructed Cobalt Strike Beacon to get several specially selected internal systems to run a suspiciously named DLL (‘f.dll’). Cobalt Strike first established SMB sessions with target systems using compromised account credentials. During these sessions, Cobalt Strike uploaded the malicious DLL to a hidden network share. To execute the DLL, Cobalt Strike abused the Windows Service Control Manager (SCM) to remotely control and manipulate running services on the targeted internal hosts. Cobalt Strike first opened a binding handle to the svcctl interface on the targeted destination systems. It then went on to make an OpenSCManagerW request, a CreateServiceA request, and a StartServiceA request to the svcctl interface on the targeted hosts: 

·      Bind request – opens a binding handle to the relevant RPC interface (in this case, the svcctl interface) on the destination device

·      OpenSCManagerW request – establishes a connection to the Service Control Manager (SCM) on the destination device and opens a specified SCM database

·      CreateServiceA request – creates a service object and adds it to the specified SCM database 

·      StartServiceA request – starts a specified service

Figure 8: The above figure, taken from Darktrace’s Advanced Search interface, outlines an infected system’s lateral movement activities. After writing a file named ‘f.dll’ to the C$ share on an internal server, the infected device made several RPC requests to the svcctl interface on the targeted server

It is likely that the DLL file which the threat actors distributed was a Cobalt Strike payload. In one case, however, the threat actor was also seen distributing and executing a payload named ‘procdump64.exe’. This may suggest that the threat actor was seeking to use ProcDump to obtain authentication material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). Given that ProcDump is a legitimate Windows Sysinternals tool primarily used for diagnostics and troubleshooting, it is likely that threat actors leveraged it in order to evade detection. 

In all the cases which Darktrace observed, threat actors’ attempts to conduct follow-up activities after moving laterally were thwarted with the help of Darktrace’s SOC team. It is likely that the threat actors responsible for the reported activities were seeking to deploy ransomware within the targeted networks. The steps which the threat actors took to make progress towards achieving this objective resulted in highly unusual patterns of network traffic. Darktrace’s detection of these unusual network activities allowed security teams to prevent these threat actors from achieving their disruptive objectives. 

Darktrace Coverage

Once threat actors succeeded in tricking users into running BumbleBee on their devices, Darktrace’s Self-Learning AI immediately detected the command-and-control (C2) activity generated by the loader. BumbleBee’s C2 activity caused the following Darktrace models to breach:

·      Anomalous Connection / Anomalous SSL without SNI to New External

·      Anomalous Connection / Suspicious Self-Signed SSL

·      Anomalous Connection / Rare External SSL Self-Signed

·      Compromise / Suspicious TLS Beaconing To Rare External

·      Compromise / Beacon to Young Endpoint

·      Compromise / Beaconing Activity To External Rare

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / Suspicious TLS Beaconing To Rare External

·      Compromise / SSL Beaconing to Rare Destination

·      Compromise / Large Number of Suspicious Successful Connections

·      Device / Multiple C2 Model Breaches 

BumbleBee’s delivery of Cobalt Strike Beacon onto target systems resulted in those systems communicating with Cobalt Strike C2 servers. Cobalt Strike Beacon’s C2 communications resulted in breaches of the following models: 

·      Compromise / Beaconing Activity To External Rare

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / SSL or HTTP Beacon

·      Compromise / Slow Beaconing Activity To External Rare

·      Compromise / SSL Beaconing to Rare Destination 

The threat actors’ subsequent port scanning and SMB enumeration activities caused the following models to breach:

·      Device / Network Scan

·      Anomalous Connection / SMB Enumeration

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / Suspicious Network Scan Activity  

The threat actors’ attempts to obtain account password data from domain controllers using the DCSync technique resulted in breaches of the following models: 

·      Compromise / Unusual SMB Session and DRS

·      Anomalous Connection / Anomalous DRSGetNCChanges Operation

Finally, the threat actors’ attempts to internally distribute and execute payloads resulted in breaches of the following models:

·      Compliance / SMB Drive Write

·      Device / Lateral Movement and C2 Activity

·      Device / SMB Lateral Movement

·      Device / Multiple Lateral Movement Model Breaches

·      Anomalous File / Internal / Unusual SMB Script Write

·      Anomalous File / Internal / Unusual Internal EXE File Transfer

·      Anomalous Connection / High Volume of New or Uncommon Service Control

If Darktrace/Network had been configured in the targeted environments, then it would have blocked BumbleBee’s C2 communications, which would have likely prevented the threat actors from delivering Cobalt Strike Beacon into the target networks. 

Figure 9: Attack timeline

Conclusion

Threat actors use loaders to smuggle more harmful payloads into target networks. Prior to March 2022, it was common to see threat actors using the BazarLoader loader to transfer their payloads into target environments. However, since the public disclosure of the Conti gang’s Jabber chat logs at the end of February, the cybersecurity world has witnessed a shift in tradecraft. Threat actors have seemingly transitioned from using BazarLoader to using a novel loader known as ‘BumbleBee’. Since BumbleBee first made an appearance in March 2022, a growing number of threat actors, in particular ransomware actors, have been observed using it.

It is likely that this trend will continue, which makes the detection of BumbleBee activity vital for the prevention of ransomware deployment within organisations’ networks. During April, Darktrace’s SOC team observed a particular pattern of threat actor activity involving the BumbleBee loader. After tricking users into running BumbleBee on their devices, threat actors were seen instructing BumbleBee to drop Cobalt Strike Beacon. Threat actors then leveraged Cobalt Strike Beacon to conduct network reconnaissance, obtain account password data from internal domain controllers, and distribute malicious payloads internally.  Darktrace’s detection of these activities prevented the threat actors from achieving their likely harmful objectives.  

Thanks to Ross Ellis for his contributions to this blog.

Appendices 

References 

[1] https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/ 

[2] https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/ 

[3] https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming

[4] https://www.cynet.com/orion-threat-alert-flight-of-the-bumblebee/ 

[5] https://research.nccgroup.com/2022/04/29/adventures-in-the-land-of-bumblebee-a-new-malicious-loader/ 

[6] https://www.bleepingcomputer.com/news/security/conti-ransomwares-internal-chats-leaked-after-siding-with-russia/ 

[7] https://therecord.media/conti-leaks-the-panama-papers-of-ransomware/ 

[8] https://www.secureworks.com/blog/gold-ulrick-leaks-reveal-organizational-structure-and-relationships 

[9] https://www.prodaft.com/m/reports/Conti_TLPWHITE_v1.6_WVcSEtc.pdf 

[10] https://www.kroll.com/en/insights/publications/cyber/bumblebee-loader-linked-conti-used-in-quantum-locker-attacks 

[11] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/bumblebee-loader-cybercrime 

[12] https://isc.sans.edu/diary/TA578+using+thread-hijacked+emails+to+push+ISO+files+for+Bumblebee+malware/28636 

[13] https://isc.sans.edu/diary/rss/28664 

[14] https://www.logpoint.com/wp-content/uploads/2022/05/buzz-of-the-bumblebee-a-new-malicious-loader-threat-report-no-3.pdf 

[15] https://ghoulsec.medium.com/mal-series-23-malware-loader-bumblebee-6ab3cf69d601 

[16]  https://blog.cyble.com/2022/06/07/bumblebee-loader-on-the-rise/  

[17]  https://asec.ahnlab.com/en/35460/ 

[18] https://thedfirreport.com/2021/07/19/icedid-and-cobalt-strike-vs-antivirus/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI