Blog
/

Inside the SOC

/
April 2, 2024

Darktrace Threat Research Investigates Raspberry Robin Worm

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Apr 2024
The Darktrace Threat Research team investigates Raspberry Robin, an evasive worm in USB drives. Learn how to protect yourself from this malicious variant.

Introduction

In the face of increasingly hardened digital infrastructures and skilled security teams, malicious actors are forced to constantly adapt their attack methods, resulting in sophisticated attacks that are designed to evade human detection and bypass traditional network security measures.  

One such example that was recently investigated by Darktrace is Raspberry Robin, a highly evasive worm malware renowned for merging existing and novel techniques, as well as leveraging both physical hardware and software, to establish a foothold within organization’s networks and propagate additional malicious payloads.

What is Raspberry Robin?

Raspberry Robin, also known as ‘QNAP worm’, is a worm malware that was initially discovered at the end of 2023 [1], however, its debut in the threat landscape may have predated this, with Microsoft uncovering malicious artifacts linked to this threat (which it tracks under the name Storm-0856) dating back to 2019 [4]. At the time, little was known regarding Raspberry Robin’s objectives or operators, despite the large number of successful infections worldwide. While the identity of the actors behind Raspberry Robin still remains a mystery, more intelligence has been gathered about the malware and its end goals as it was observed delivering payloads from different malware families.

Who does Raspberry Robin target?

While it was initially reported that Raspberry Robin primarily targeted the technology and manufacturing industries, researchers discovered that the malware had actually targeted multiple sectors [3] [4]. Darktrace’s own investigations echoed this, with Raspberry Robin infections observed across various industries, including public administration, finance, manufacturing, retail education and transportation.

How does Raspberry Robin work?

Initially, it appeared that Raspberry Robin's access to compromised networks had not been utilized to deliver final-stage malware payloads, nor to steal corporate data. This uncertainty led researchers to question whether the actors involved were merely “cybercriminals playing around” or more serious threats [3]. This lack of additional exploitation was indeed peculiar, considering that attackers could easily escalate their attacks, given Raspberry Robin’s ability to bypass User Account Control using legitimate Windows tools [4].

However, at the end of July 2022, some clarity emerged regarding the operators' end goals. Microsoft researchers revealed that the access provided by Raspberry Robin was being utilized by an access broker tracked as DEV-0206 to distribute the FakeUpdates malware downloader [2]. Researchers further discovered malicious activity associated with Evil Corp TTPs (i.e., DEV-0243) [5] and payloads from the Fauppod malware family leveraging Raspberry Robin’s access [8]. This indicates that Raspberry Robin may, in fact, be an initial access broker, utilizing its presence on hundreds of infected networks to distribute additional payloads for paying malware operators. Thus far, Raspberry Robin has been observed distributing payloads linked to FIN11, Clop Gang, BumbleBee, IcedID, and TrueBot on compromised networks [12].

Raspberry Robin’s Continued Evolution

Since it first appeared in the wild, Raspberry Robin has evolved from "being a widely distributed worm with no observed post-infection actions [...] to one of the largest malware distribution platforms currently active" [8]. The fact that Raspberry Robin has become such a prevalent threat is likely due to the continual addition of new features and evasion capabilities to their malware [6] [7].  

Since its emergence, the malware has “changed its communication method and lateral movement” [6] in order to evade signature detections based on threat intelligence and previous versions. Endpoint security vendors commonly describe it as heavily obfuscated malware, employing multiple layers of evasion techniques to hinder detection and analysis. These include for example dropping a fake payload when analyzed in a sandboxed environment and using mixed-case executing commands, likely to avoid case-sensitive string-based detections.  

In more recent campaigns, Raspberry Robin further appears to have added a new distribution method as it was observed being downloaded from archive files sent as attachments using the messaging service Discord [11]. These attachments contained a legitimate and signed Windows executable, often abused by attackers for side-loading, alongside a malicious dynamic-link library (DLL) containing a Raspberry Robin sample.

Another reason for the recent success of the malware may be found in its use of one-day exploits. According to researchers, Raspberry Robin now utilizes several local privilege escalation exploits that had been recently disclosed, even before a proof of concept had been made available [9] [10]. This led cyber security professionals to believe that operators of the malware may have access to an exploit seller [6]. The use of these exploits enhances Raspberry Robin's detection evasion and persistence capabilities, enabling it to propagate on networks undetected.

Darktrace’s Coverage of Raspberry Robin

Through two separate investigations carried out by Darktrace’s Threat Research team, first in late 2022 and then in November 2023, it became evident that Raspberry Robin was capable of integrating new functionalities and tactics, techniques and procedures (TTPs) into its attacks. Darktrace DETECT™ provided full visibility over the evolving campaign activity, allowing for a comparison of the threat across both investigations. Additionally, if Darktrace RESPOND™ was enabled on affected networks, it was able to quickly mitigate and contain emerging activity during the initial stages, thwarting the further escalation of attacks.

Raspberry Robin Initial Infection

The most prevalent initial infection vector appears to be the introduction of an infected external drive, such as a USB stick, containing a malicious .LNK file (i.e., a Windows shortcut file) disguised as a thumb drive or network share. When clicked, the LNK file automatically launches cmd.exe to execute the malicious file stored on the external drive, and msiexec.exe to connect to a Raspberry Robin command-and-control (C2) endpoint and download the main malware component. The whole process leverages legitimate Windows processes and is therefore less likely to raise any alarms from more traditional security solutions. However, Darktrace DETECT was able to identify the use of Msiexec to connect to a rare endpoint as anomalous in every case investigated.

Little is currently known regarding how the external drives are infected and distributed, but it has been reported that affected USB drives had previously been used for printing at printing and copying shops, suggesting that the infection may have originated from such stores [13].

A method as simple as leaving an infected USB on a desk in a public location can be a highly effective social engineering tactic for attackers. Exploiting both curiosity and goodwill, unsuspecting individuals may innocently plug in a found USB, hoping to identify its owner, unaware that they have unwittingly compromised their device.

As Darktrace primarily operates on the network layer, the insertion of a USB endpoint device would not be within its visibility. Nevertheless, Darktrace did observe several instances wherein multiple Microsoft endpoints were contacted by compromised devices prior to the first connection to a Raspberry Robin domain. For example, connections to the URI '/fwlink/?LinkID=252669&clcid=0x409' were observed in multiple customer environments prior to the first Raspberry Robin external connection. This connectivity seems to be related to Windows attempting to retrieve information about installed hardware, such as a printer, and could also be related to the inserting of an external USB drive.

Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.
Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.

Raspberry Robin Command-and-Control Activity

In all cases investigated by Darktrace, compromised devices were detected making HTTP GET connections via the unusual port 8080 to Raspberry Robin C2 endpoints using the new user agent 'Windows Installer'.

The C2 hostnames observed were typically short and matched the regex /[a-zA-Z0-9]{2,4}.[a-zA-Z0-9]{2,6}/, and were hosted on various top-level domains (TLD) such as ‘.rocks’, ‘.pm’, and ‘.wf’. On one customer network, Darktrace observed the download of an MSI file from the Raspberry Robin domain ‘wak[.]rocks’. This package contained a heavily protected malicious DLL file whose purpose was unknown at the time.  

However, in September 2022, external researchers revealed that the main purpose of this DLL was to download further payloads and enable lateral movement, persistence and privilege escalation on compromised devices, as well as exfiltrating sensitive information about the device. As worm infections spread through networks automatically, exfiltrating device data is an essential process for threat actor to keep track of which systems have been infected.

On affected networks investigated by Darktrace, compromised devices were observed making C2 connections that contained sensitive device information, including hostnames and credentials, with additional host information likely found within the data packets [12].

Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.
Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.

As for C2 infrastructure, Raspberry Robin leverages compromised Internet of Things (IoT) devices such as QNAP network attached storage (NAS) systems with hijacked DNS settings [13]. NAS devices are data storage servers that provide access to the files they store from anywhere in the world. These features have been abused by Raspberry Robin operators to distribute their malicious payloads, as any uploaded file could be stored and shared easily using NAS features.

However, Darktrace found that QNAP servers are not the only devices being exploited by Raspberry Robin, with DETECT identifying other IoT devices being used as C2 infrastructure, including a Cerio wireless access point in one example. Darktrace recognized that this connection was new to the environment and deemed it as suspicious, especially as it also used new software and an unusual port for the HTTP protocol (i.e., 8080 rather than 80).

In several instances, Darktrace observed Raspberry Robin utilizing TOR exit notes as backup C2 infrastructure, with compromised devices detected connecting to TOR endpoints.

Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.

Raspberry Robin in 2022 vs 2023

Despite the numerous updates and advancements made to Raspberry Robin between the investigations carried out in 2022 and 2023, Darktrace’s detection of the malware was largely the same.

DETECT models breached during first investigation at the end of 2022:

  • Device / New User Agent
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent and New IP
  • Compromise / Suspicious Request Data
  • Compromise / Uncommon Tor Usage
  • Possible Tor Usage

DETECT models breached during second investigation in late 2023:

  • Device / New User Agent and New IP
  • Device / New User Agent and Suspicious Request Data
  • Device / New User Agent
  • Device / Suspicious Domain
  • Possible Tor Usage

Darktrace’s anomaly-based approach to threat detection enabled it to consistently detect the TTPs and IoCs associated with Raspberry Robin across the two investigations, despite the operator’s efforts to make it stealthier and more difficult to analyze.

In the first investigation in late 2022, Darktrace detected affected devices downloading addition executable (.exe) files following connections to the Raspberry Robin C2 endpoint, including a numeric executable file that appeared to be associated with the Vidar information stealer. Considering the advanced evasion techniques and privilege escalation capabilities of Raspberry Robin, early detection is key to prevent the malware from downloading additional malicious payloads.

In one affected customer environment investigated in late 2023, a total of 12 devices were compromised between mid-September and the end of October. As this particular customer did not have Darktrace RESPOND, the Raspberry Robin infection was able to spread through the network unabated until the customer acted upon Darktrace DETECT’s alerts.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have been able to take immediate action following the first observed connection to a Raspberry Robin C2 endpoint, by blocking connections to the suspicious endpoint and enforcing a device’s normal ‘pattern of life’.

By enforcing a pattern of life on an affected device, RESPOND would prevent it from carrying out any activity that deviates from this learned pattern, including connections to new endpoints using new software as was the case in Figure 5, effectively shutting down the attack in the first instance.

Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.
Figure 5: Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.

Conclusion

Raspberry Robin is a highly evasive and adaptable worm known to evolve and change its TTPs on a regular basis in order to remain undetected on target networks for as long as possible. Due to its ability to drop additional malware variants onto compromised devices, it is crucial for organizations and their security teams to detect Raspberry Robin infections at the earliest possible stage to prevent the deployment of potentially disruptive secondary attacks.

Despite its continued evolution, Darktrace's detection of Raspberry Robin remained largely unchanged across the two investigations. Rather than relying on previous IoCs or leveraging existing threat intelligence, Darktrace DETECT’s anomaly-based approach allows it to identify emerging compromises by detecting the subtle deviations in a device’s learned behavior that would typically come with a malware compromise.

By detecting the attacks at an early stage, Darktrace gave its customers full visibility over malicious activity occurring on their networks, empowering them to identify affected devices and remove them from their environments. In cases where Darktrace RESPOND was active, it would have been able to take autonomous follow-up action to halt any C2 communication and prevent the download of any additional malicious payloads.  

Credit to Alexandra Sentenac, Cyber Analyst, Trent Kessler, Senior Cyber Analyst, Victoria Baldie, Director of Incident Management

Appendices

Darktrace DETECT Model Coverage

Device / New User Agent and New IP

Device / New User Agent and Suspicious Request Data

Device / New User Agent

Compromise / Possible Tor Usage

Compromise / Uncommon Tor Usage

MITRE ATT&CK Mapping

Tactic - Technique

Command & Control - T1090.003 Multi-hop Proxy

Lateral Movement - T1210 Exploitation of remote services

Exfiltration over C2 Data - T1041 Exfiltration over C2 Channel

Data Obfuscation - T1001 Data Obfuscation

Vulnerability Scanning - T1595.002 Vulnerability Scanning

Non-Standard Port - T1571 Non-Standard Port

Persistence - T1176 Browser Extensions

Initial Access - T1189 Drive By Compromise / T1566.002  Spearphishing Link

Collection - T1185 Man in the browser

List of IoCs

IoC - Type - Description + Confidence

vqdn[.]net - Hostname - C2 Server

mwgq[.]net - Hostname - C2 Server

wak[.]rocks - Hostname - C2 Server

o7car[.]com - Hostname - C2 Server

6t[.]nz - Hostname - C2 Server

fcgz[.]net - Hostname - Possible C2 Server

d0[.]wf - Hostname - C2 Server

e0[.]wf - Hostname - C2 Server

c4z[.]pl - Hostname - C2 Server

5g7[.]at - Hostname - C2 Server

5ap[.]nl - Hostname - C2 Server

4aw[.]ro - Hostname - C2 Server

0j[.]wf - Hostname - C2 Server

f0[.]tel - Hostname - C2 Server

h0[.]pm - Hostname - C2 Server

y0[.]pm - Hostname - C2 Server

5qy[.]ro - Hostname - C2 Server

g3[.]rs - Hostname - C2 Server

5qe8[.]com - Hostname - C2 Server

4j[.]pm - Hostname - C2 Server

m0[.]yt - Hostname - C2 Server

zk4[.]me - Hostname - C2 Server

59.15.11[.]49 - IP address - Likely C2 Server

82.124.243[.]57 - IP address - C2 Server

114.32.120[.]11 - IP address - Likely C2 Server

203.186.28[.]189 - IP address - Likely C2 Server

70.124.238[.]72 - IP address - C2 Server

73.6.9[.]83 - IP address - Likely C2 Server

References

[1] https://redcanary.com/blog/raspberry-robin/  

[2] https://www.bleepingcomputer.com/news/security/microsoft-links-raspberry-robin-malware-to-evil-corp-attacks/

[3] https://7095517.fs1.hubspotusercontent-na1.net/hubfs/7095517/FLINT%202022-016%20-%20QNAP%20worm_%20who%20benefits%20from%20crime%20(1).pdf

[4] https://www.bleepingcomputer.com/news/security/microsoft-finds-raspberry-robin-worm-in-hundreds-of-windows-networks/

[5] https://therecord.media/microsoft-ties-novel-raspberry-robin-malware-to-evil-corp-cybercrime-syndicate

[6] https://securityaffairs.com/158969/malware/raspberry-robin-1-day-exploits.html

[7] https://research.checkpoint.com/2024/raspberry-robin-keeps-riding-the-wave-of-endless-1-days/

[8] https://redmondmag.com/articles/2022/10/28/microsoft-details-threat-actors-leveraging-raspberry-robin-worm.aspx

[9] https://www.bleepingcomputer.com/news/security/raspberry-robin-malware-evolves-with-early-access-to-windows-exploits/

[10] https://www.bleepingcomputer.com/news/security/raspberry-robin-worm-drops-fake-malware-to-confuse-researchers/

[11] https://thehackernews.com/2024/02/raspberry-robin-malware-upgrades-with.html

[12] https://decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/

[13] https://blog.bushidotoken.net/2023/05/raspberry-robin-global-usb-malware.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Alexandra Sentenac
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI