Blog
/
No items found.
/
April 9, 2024

The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Apr 2024
Part 1: This blog outlines Darktrace’s State of AI Cybersecurity research report, showing key findings from our global survey, covering the impacts AI has on the cyber threat landscape, cyber security solutions, and perceptions and priorities for security practitioners.

What is the State of AI Cybersecurity Report?

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

Here are some of the key findings from the report:

What is the impact of AI on the cyber threat landscape?

Today’s security stakeholders are already seeing AI’s impact on the threat landscape.

"74% of survey respondents agree that AI-powered cyber threats are having a significant impact on their organizations. However, 60% of respondents fear that their organizations are not adequately prepared to defend against AI-powered threats and attacks."

How is AI being applied in cyber-attacks?

Generative AI can be used to create large volumes of highly personalized phishing attacks and to change the signatures and hashes associated with malware files. Other AI tools can also scan environments for exploitable vulnerabilities.

However, operationalizing AI in a cyber-attack requires sophistication. In most cases, attackers tend to begin using AI by addressing the simplest use cases or “lowest-hanging fruit.”

Identifying exactly when and where AI is being applied is not always possible since there are few methods for doing so. Thus, defenders will need to focus their effort on preparing for threats that are coming at them faster than ever before.

How does AI affect cyber risk?

"71% of organizations have already taken strides to reduce the risks that come with AI’s adoption."

In terms of cyber risk, adopting AI technologies into the business also generates concern for industry professionals given the increased risk of exposing sensitive or proprietary information through employee use of third-party generative AI tools. The access to publicly-available, text-based generative AI systems to increase productivity opens the door to “shadow AI” in which individuals use these popular AI tools without organizational approval or oversight.

What is the impact of AI on cybersecurity solutions?

AI is poised to transform not just the threat landscape but the solution landscape as well, a fact defenders understand.

"95% of cybersecurity professionals agree that AI-powered solutions will level up their organizations’ defenses."

Survey participants believe that AI-powered security solutions are a must-have for countering the risks posed by AI-powered threats. However, cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the increasing demands. But not all AI is created equal, and not all these solutions live up to the widespread hype.

"Improving threat detection (57%) and identifying exploitable vulnerabilities (50%) are the top ranked areas where respondents believe AI will make an impact."

However, survey participants may not fully understand how AI is applied to these aspects of cybersecurity. For example, generativeAI actually has little to no role to play in threat detection and proactive attack surface management. Generative AI does accelerate the data retrieval process within threat detection, can create quick incident summaries, automate low level tasks, and simulate phishing emails, but it does not improve the ability to detect novel attacks.

Understanding AI technologies in cybersecurity

A worldwide preoccupation with generativeAI may have colored perceptions of what AI is and where it’s most effectively applied.

"Only 26% of security professionals report a full understanding of the different types of AI in use within security products."

As the AI revolution unfolds, the speed at which vendors are introducing new AI-powered solutions far outpaces the rate at which practitioners are being trained how to use them.

There’s a strong need for greater vendor transparency, as well as efforts to educate end users so that they can better understand the technologies they are deploying.

Types of AI in cybersecurity

Supervised machine learning: Applied more often than any other type of AI in cybersecurity.Trained on human attack patterns and historical threat intelligence.

Natural language processing (NLP): Applies computational techniques to process and understand human language.

Large language models (LLMs): Applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. Used in generative AI tools. The integrity of their output depends upon the quality of the data on which they were trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies.

The more attention AI technology gets in cybersecurity, the higher expectations tend to be. As leaders and practitioners discover more about AI, they will need to learn when and where to use it – and how to offset the potential risks that various models and approaches can bring.

Cybersecurity practitioners’ priorities and objectives

Although security stakeholders are aware that the rise of AI will require them to implement new tools and deploy more advanced capabilities in certain areas, they still entertain multiple different – and sometimes conflicting – opinions about planning for the future.

"88% of cybersecurity professionals prefer a platform approach over individual point products."

Respondents expressed a strong preference for a platform- centric approach in their cybersecurity solution stacks. This is undoubtedly due to a far-reaching desire to reduce cost and complexity.

Even more widespread was agreement that organizations prefer to purchase new security capabilities within a broader platform rather than as individual point products.

"Top priorities for improving their ability to defend against AI-driven threats include adding AI-powered tools to their solution stacks and improving toolset integration."

Many security teams are looking to their existing vendors first when thinking about adding AI-powered tools to their solution stack. This may be because:

  1. It takes more time and effort to replace existing tooling than it does to add onto the exiting stack.
  2. Trust has already been established within existing relationships. As long as this is valued, there will always be a need to integrate AI and non-AI solutions.

Download the report for more statistics and insight on the state of AI in cybersecurity.

Learn more about AI can help you secure your enterprise

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Mitchell Bezzina
VP, Product and Solutions Marketing
Book a 1-1 meeting with one of our experts
Share this article

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI