Blog
/
/
July 9, 2019

Insights on Shamoon 3 Data-Wiping Malware

Gain insights into Shamoon 3 and learn how to protect your organization from its destructive capabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jul 2019

Responsible for some of the “most damaging cyber-attacks in history” since 2012, the Shamoon malware wipes compromised hard drives and overwrites key system processes, intending to render infected machines unusable. During a trial period in the network of a global company, Darktrace observed a Shamoon-powered cyber-attack on December 10, 2018 — when several Middle Eastern firms were impacted by a new variant of the malware.

While there has been detailed reporting on the malware files and wiper modules that these latest Shamoon attacks employed, the complete cyber kill chain involved remains poorly understood, while the intrusions that led to the malware’s eventual “detonation” last December has not received nearly as much coverage. As a consequence, this blog post will focus on the insights that Darktrace’s cyber AI generated regarding (a) the activity of the infected devices during the “detonation” and (b) the indicators of compromise that most likely represent lateral movement activity during the weeks prior.

A high-level overview of major events leading up to the detonation on December 10th.

In the following, we will dive into that timeline more deeply in reverse chronological order, going back in time to trace the origins of the attack. Let’s begin with zero hour.

December 10: 42 devices “detonate”

A bird's-eye perspective of how Darktrace identified the alerts in December 2018.

What immediately strikes the analyst’s eye is the fact that a large accumulation of alerts, indicated by the red rectangle above, took place on December 10, followed by complete network silence over the subsequent four days.

These highlighted alerts represent Darktrace’s detection of unusual network scans on remote port 445 that were conducted by 42 infected devices. These devices proceeded to scan more machines — none of which were among those already infected. Such behavior indicates that the compromised devices started scanning and were wiped independently from each other, instead of conducting worming-style activity during the detonation of the malware. The initial scanning device started its scan at 12:56 p.m. UTC, while the last scanning device started its scan at 2:07 p.m. UTC.

Not only was this activity readily apparent from the bird’s-eye perspective shown above, the detonating devices also created the highest-priority Darktrace alerts over a several day period: “Device / Network Scan” and “Device / Expanded Network Scan”:

Moreover, when investigating “Devices — Overall Score,” the detonating devices rank as the most critical assets for the time period December 8–11:

Darktrace AI generated all of the above alerts because they represented significant anomalies from the normal ‘pattern of life’ that the AI had learned for each user and device on the company’s network. Crucially, none of the alerts were the product of predefined ‘rules and signatures’ — the mechanism that conventional security tools rely on to detect cyber-threats. Rather, the AI revealed the activity because the scans were unusual for the devices given their precise nature and timing, demonstrating the necessity of the such a nuanced approach in catching elusive threats like Shamoon. Of further importance is that the company’s network consists of around 15,000 devices, meaning that a rules-based approach without the ability to prioritize the most serious threats would have drowned out the Shamoon alerts in noise.

Now that we’ve seen how cyber AI sounded the alarms during the detonation itself, let’s investigate the various indicators of suspicious lateral movement that precipitated the events of December 10. Most of this activity happened in brief bursts, each of which could have been spotted and remediated if Darktrace had been closely monitored.

November 19: Unusual Remote Powershell Usage (WinRM)

One such burst of unusual activity occurred on November 19, when Darktrace detected 14 devices — desktops and servers alike — that all successfully used the WinRM protocol. None of these devices had previously used WinRM, which is also unusual for the organization’s environment as a whole. Conversely, Remote PowerShell is quite often abused in intrusions during lateral movement. The devices involved did not classify as traditional administrative devices, making their use of WinRM even more suspicious.

Note the clustering of the WinRM activity as indicated by the timestamp on the left.

October 29–31: Scanning, Unusual PsExec & RDP Brute Forcing

Another burst of likely lateral movement occurred between October 29 and 31, when two servers were seen using PsExec in an unusual fashion. No PsExec activity had been observed in the network before or after these detections, prompting Darktrace to flag the behavior. One of the servers conducted an ICMP Ping sweep shortly before the lateral movement. Not only did both servers start using PsExec on the same day, they also used SMBv1 — which, again, was very unusual for the network.

Most legitimate administrative activity involving PsExec these days uses SMBv2. The graphic below shows several Darktrace alerts on one of the involved servers — take note of the chronology of detections at the bottom of the graphic. This clearly reads like an attacker’s diary: ICMP scan, SMBv1 usage, and unusual PsExec usage, followed by new remote service controls. This server was among the top five highest ranking devices during the analyzed time period and was easy to identify.

Following the PsExec use, the servers also started an anomalous amount of remote services via the srvsvc and svcctl pipes over SMB. They did so by starting services on remote devices with which they usually did not communicate — using SMBv1, of course. Some of the attempted communication failed due to access violation and access permission errors. Both are often seen during malicious lateral movement.

Additional context around the SMBv1 and remote srvsvc pipe activity. Note the access failure.

Thanks to Darktrace’s deep packet inspection, we can see exactly what happened on the application layer. Darktrace highlights any unusual or new activity in italics below the connections — we can easily see that the SMB activity is not only unusual because of SMBv1 being used, but also because this server had never used this type of SMB activity remotely to those particular destinations before. We can also observe remote access to the winreg pipe — likely indicating more lateral movement and persistence mechanisms being established.

The other server conducted some targeted address scanning on the network on October 29, employing typical lateral movement ports 135, 139 and 445:

Another device was observed to conduct RDP brute forcing on October 29 around the same time as the above address scan. The desktop made an unusual amount of RDP connections to another internal server.

A clear plateau in increased internal connections (blue) can be seen. Every colored dot on top represents an RDP brute force detection. This was again a clear-cut detection not drowned in other noise — these were the only RDP brute force detections for a several-month monitoring time window.

October 9–11: Unusual Credential Usage

Darktrace identifies the unusual use of credentials — for instance, if administrative credentials are used on client device on which they are not commonly used. This might indicate lateral movement where service accounts or local admin accounts have been compromised.

Darktrace identified another cluster of activity that is likely representing lateral movement, this time involving unusual credential usage. Between October 9 and 11, Darktrace identified 17 cases of new administrative credentials being used on client devices. While new administrative credentials were being used from time to time on devices as part of normal administrative activity, this strong clustering of unusual admin credential usage was outstanding. Additionally, Darktrace also identified the source of some of the credentials being used as unusual.

Conclusion

Having observed a live Shamoon infection within Darktrace, there are a few key takeaways. While the actual detonation on December 10 was automated, the intrusion that built up to it was most likely manual. The fact that all detonating devices started their malicious activity roughly at the same time — without scanning each other — indicates that the payload went off based on a trigger like a scheduled task. This is in line with other reporting on Shamoon 3.

In the weeks leading up to December 10, there were various significant signs of lateral movement that occurred in disparate bursts — indicating a ‘low-and-slow’ manual intrusion.

The adversaries used classic lateral movement techniques like RDP brute forcing, PsExec, WinRM usage, and the abuse of stolen administrative credentials.

While the organization in question had a robust security posture, an attacker only needs to exploit one vulnerability to bring down an entire system. During the lifecycle of the attack, the Darktrace Enterprise Immune System identified the threatening activity in real time and provided numerous suggested actions that could have prevented the Shamoon attack at various stages. However, human action was not taken, while the organization had yet to activate Antigena, Darktrace’s autonomous response solution, which could have acted in the security team’s stead.

Despite having limited scope during the trial period, the Enterprise Immune System was able to detect the lateral movement and detonation of the payload, which was indicative of the malicious Shamoon virus activity. A junior analyst could have easily identified the activity, as high-severity alerts were consistently generated, and the likely infected devices were at the top of the suspicious devices list.

Darktrace Antigena would have prevented the movement responsible for the spread of the virus, while also sending high-severity alerts to the security team to investigate the activity. Even the scanning on port 445 from the detonating devices would have been shut down, as it presented a significant deviation from the known behavior of all scanning devices, which would have further limited the virus’s spread, and ultimately, spared the company and its devices from attack.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

June 2, 2025

Darktrace Recognized as a Leader in the 2025 Gartner® Magic Quadrant™ for Network Detection and Response

Man using darktrace security software on computerDefault blog imageDefault blog image

Darktrace has been recognized as a Leader in the first ever Magic Quadrant™ for Network Detection and Response (NDR).

A Gartner Magic Quadrant is a culmination of research in a specific market, giving you a wide-angle view of the relative positions of the market’s competitors. CIOs and CISOs can use this research to make informed decisions about NDR, which is evolving to offer broader threat detection. We encourage our customers to read the full report to get the complete picture.

Darktrace has also received accolades in other recent NDR leadership evaluations including IDC named as market share leader, and  KuppingerCole’s heralding us as an Overall Leader, Product Leader, Market Leader and Innovation Leader. We believe we have continued to be identified as a Leader due to the strength of our capabilities in NDR, driven by our unique application of AI in cybersecurity, continuous product innovation, and our ability to execute on a global scale to meet the evolving needs of our customers.

We’re proud of Darktrace’s unrivaled market, and ability to execute effectively in the network security market, reflecting our commitment to delivering high-quality, reliable solutions that meet the evolving needs of our customers.

Gartner MQ for NDR, NDR mq, Gartner NDR, Gartner best NDR solution
Gartner MQ for NDR

Why is Darktrace the market share leader and undisputed force in NDR?

Transforming network security and shifting to an AI-led SOC

Darktrace’s Self-Learning AITM understands normal for your entire network, intelligently detecting anomalies and containing sophisticated threats without historical attack data. This approach, based on advanced, unsupervised machine learning, enables Darktrace to catch novel, unknown and insider threats that traditional tools miss and other NDR vendors can’t detect. Darktrace has identified and contained attempted exploits of zero-day vulnerabilities up to 11 days before public disclosure.

We change SOC dynamics with our Cyber AI AnalystTM, which eliminates manual triage and investigation by contextualizing all relevant alerts across your environment, including third-party alerts, and performing end-to-end investigations at machine speed. Cyber AI Analyst gives your team the equivalent of 30 extra full time Level 2 analysts without the hiring overhead2, so you can shift your team away from manual, reactive workflows and uplift them to focus on more proactive tasks.

When combined, Darktrace Self-Learning AI and Cyber AI Analyst go far beyond the capabilities of traditional NDR approaches to completely transform your network security and help your teams operate at the speed and scale of AI.

Coverage across the extended IT enterprise and all-important OT devices

We believe the report validates the business-centric approach that Darktrace uses to deploy AI locally and train it solely on each unique environment, giving our customers tailored security outcomes without compromising on privacy.

This contrasts with other NDR vendors that require cloud connectivity to either deliver full functionality or to regularly update their globally trained models with the latest attack data. This capability is particularly sought after by organizations who are no longer just on-premise, have operational technology (OT) networks, or those that operate in classified environments.

Darktrace serves these organizations and industries by extending IT and unifying OT security within a single solution, reducing alert fatigue and accelerating alert investigation in industrial environments.

With Darktrace / NETWORK you can achieve:

  • Full visibility across your modern network, including on-premises, virtual networks, hybrid cloud, identities, remote workers and OT devices
  • Precision threat detection across your modern network to identify known, unknown and insider threats in real-time without relying on rules, signatures or threat intelligence,
  • 10x accelerated incident response times with agentic AI that uplifts your team and enables them to focus on more proactive tasks
  • Containment of threats with the first autonomous response solution proven to work in the enterprise, stopping attacks from progressing at the earliest stages with precise actions that avoid business disruption

Going beyond traditional NDR to build proactive network resilience

Darktrace does not just stop at threat detection, it helps you prevent threats from occurring and increase your resiliency for when attacks do happen. We help discover and prioritize up to 50% more risks across your environment and optimize incident response processes, reducing the impact of active cyber-attacks using an understanding of your data.

Attack path modeling: By leveraging attack path modeling and AI-driven risk validation, customers can close gaps before they’re exploited, focusing resources where they’ll have the greatest impact.

AI-driven playbooks and breach simulations: With AI-driven playbooks and realistic breach simulations, Darktrace helps your team practice response, strengthen processes, and reduce the impact of real-world incidents. You’re not just reacting; you’re proactively building long-term resilience.

Continued innovation in network security

Darktrace leads innovation in the NDR market with more than 200+ patents and active filings, covering a range of detection, response and AI techniques. Our AI Research Center is foundational to our ongoing innovation, including hundreds of R&D employees examining how AI can be applied to real-world problems and augment human teams.

Trusted by thousands of customers globally

Our commitment to innovation and patented Self-Learning AITM has protected organizations in all industries from known and novel attacks since 2013, bolstering network security and augmenting human teams for our 10,000 active customers across 110 countries. These organizations place a great deal of trust in Darktrace’s unique approach to cybersecurity and application of AI to detect and respond to threats across their modern network.

A new standard for NDR

Darktrace / NETWORK is not just another NDR tool; we are the most advanced network security platform in the industry that pushes beyond traditional capabilities to protect thousands of organizations against known and novel threats.

From real-time threat detection and autonomous response to proactive risk management, we’re transforming network security from reactive to resilient.

[related-resource]

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved. Magic Quadrant is a registered trademark of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

References

1, 3 Gartner, Magic Quadrant for Network Detection and Response, by Thomas Lintemuth, Esraa ElTahawy, John Collins, Charanpal Bhogal, 29 May, 2025

2 Darktrace Cyber AI Analyst fleet data, 2023

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Email

/

May 29, 2025

Why attack-centric approaches to email security can’t cope with modern threats

Default blog imageDefault blog image

What’s the problem with an attack-centric mindset?

For decades, traditional email security strategies have been built around an attack-centric mindset. Secure Email Gateways (SEGs) and other legacy solutions operate on the principle of identifying and blocking known threats. These systems rely heavily on predefined threat intelligence – blacklists, malware signatures, and reputation-based analysis – to filter out malicious content before it reaches the inbox.

While this approach was sufficient when email threats were relatively static and signature-based, it’s increasingly ineffective against the sophistication of modern attacks. Techniques like spear phishing, business email compromise (BEC), and supply chain attacks often bypass traditional SEG defenses because they lack obvious malicious indicators. Instead, they leverage social engineering, look-alike domains, and finely tuned spoofing tactics that are designed to evade detection.

The challenge extends beyond just legacy SEGs. Many modern email security providers have inherited the same attack-centric principles, even if they've reimagined the technology stack. While some vendors have shifted to API-based deployments and incorporated AI to automate pattern recognition, the underlying approach remains the same: hunting for threats based on known indicators. This methodology, though it’s undergone modernization using AI, still leaves gaps when it comes to novel, hyper-targeted threats that manipulate user behavior rather than deploy predictable malicious signatures. Attack-centric security will always remain one step behind the attacker.

By the way, native email security already covers the basics

One of the most overlooked realities in email security is that native solutions like Microsoft 365’s built-in security already handle much of the foundational work of attack-centric protection. Through advanced threat intelligence, anti-phishing measures, and malware detection, Microsoft 365 actively scans incoming emails for known threats, using global telemetry to identify patterns and block suspicious content before it even reaches the user’s inbox.

This means that for many organizations, a baseline level of protection against more obvious, signature-based attacks is already in place – but many are still disabling these protections in favour of another attack-centric solution. By layering another attack-centric solution on top, they are effectively duplicating efforts without enhancing their security posture. This overlap can lead to unnecessary complexity, higher costs, and a false sense of enhanced protection when in reality, it’s more of the same.

Rather than duplicating attack-centric protections, the real opportunity lies in addressing the gaps that remain: the threats that are specifically crafted to evade traditional detection methods. This is where a business-centric approach becomes indispensable, complementing the foundational security that’s already built into your infrastructure.

Introducing… the business-centric approach

To effectively defend against advanced threats, organizations need to adopt a business-centric approach to email security. Unlike attack-centric models that hunt for known threats, business-centric security focuses on understanding the typical behaviors, relationships, and communication patterns within your organization. Rather than solely reacting to threats as they are identified, this model continuously learns what “normal” looks like for each user and each inbox.

By establishing a baseline of expected behaviors, business-centric solutions can rapidly detect anomalies that suggest compromise, such as sudden changes in sending patterns, unusual login locations, or subtle shifts in communication tone. This proactive detection method is especially powerful against spear phishing, business email compromise (BEC), and supply chain attacks that are engineered to bypass static defenses. This approach also scales with your organization, learning and adapting as new users are onboarded, communication patterns evolve, and external partners are added.

In an era where AI-driven threats are becoming the norm, having email security that knows your users and inboxes better than the attacker does is a critical advantage.

Why native + business-centric email security is the winning formula

By pairing native security with a business-centric model, organizations can cover the full spectrum of threats – from signature-based malware to sophisticated, socially engineered attacks. Microsoft 365’s in-built security manages the foundational risks, while business-centric defense identifies subtle anomalies and targeted threats that legacy approaches miss.

Layering Darktrace on top of your native Microsoft security eliminates duplicate capabilities, costs and workflows without reducing functionality

Rather than layering redundant attack-centric solutions on top of existing protections, the future of email security lies in leveraging what’s already in place and building on it with smarter, behavior-based detection. The Swiss Cheese Model is a useful one to refer to here: by acknowledging that no single defense can offer complete protection, layering defenses that plug each other’s gaps – like slices of Swiss cheese – becomes critical.

This combination also allows security teams to focus their efforts more effectively. With native solutions catching broad-based, known threats, the business-centric layer can prioritize real anomalies, minimizing false positives and accelerating response times. Organizations benefit from reduced overlap, streamlined costs, and a stronger overall security posture.

Download the full guide to take the first step towards achieving your next-generation security stack.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI