Blog
/
/
December 2, 2018

How Darktrace Finds 'Low and Slow' Cyber Threats

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Dec 2018
The latest escalation in the cyber arms race sees attackers choosing stealth over speed and cunning over chaos.

Introduction

The speed of today’s most advanced threats can be devastating. In the few minutes it takes a security analyst to step away from her screen to grab a coffee, ransomware can take down thousands of computers before human teams or traditional tools have the chance to respond. And while big, fast threats are more likely to grab the headlines, cyber-attacks which do the opposite can be just as dangerous. The latest escalation in the cyber arms race sees attackers choosing stealth over speed and cunning over chaos.

As defenders work to rapidly deploy new security and detection technologies, malware authors have been similarly innovative, working to find a means of evading them. New ‘low and slow’ attacks are able to bypass traditional security tools because each individual action compiling the larger threat is too small to detect. These attacks are designed to operate over a longer period of time – and by minimizing disruption to any data transfer or connectivity levels, they blend into legitimate traffic.

For advanced and well-resourced actors like nation states in search of valuable intellectual property or sensitive political records, subtle and prolonged exposure to the systems they attack is a significant benefit. When it comes to the most sophisticated threats, slow and steady really can win the race.

Nevertheless, detection of low and slow attacks is possible with advanced machine learning techniques. To do so, contextual knowledge is critical; by modeling the subtle and unique ‘patterns of life’ of every user, device, and the network as a whole, AI-powered defenses are, for the first time, winning this battle.

This blog explores how attackers use low and slow techniques during multiple stages of the kill chain to achieve their eventual goal. We examine three real-world case studies, drawn from over 7,000 deployments of the Enterprise Immune System, to demonstrate how cyber AI detects low and slow reconnaissance, data exfiltration, and command-and-control activity.

Low and slow reconnaissance

By monitoring the behavioral pattern of devices and users, Darktrace AI is able to learn an evolving profile for expected activity. Armed with this understanding of ‘normal’ for the network, it can then identify significant anomalies indicative of a threat. It does all this without relying on training sets of historical data, enabling the technology to spot threats that other tools miss.

On the network of a European financial services firm, Darktrace discovered a server conducting port scans of various internal computers. This type of network scanning is regularly performed for legitimate testing purposes by administrative devices, but it is also a tactic for attackers to identify vulnerabilities and points of compromise – an early stage of an attack.

Over a duration of 7 days, the server made around 214,000 failed connections to 276 unique devices. However, only a small number of ports were targeted per day. The attack was sequential, but slow over time. Measured in one day, the level of disturbance was minimal enough to evade all rules-based defenses. Nevertheless, by learning ‘self’ across the entire digital business over time, cyber AI can detect even the subtlest deviation from ‘normal’ relative to the individual device, user, or network. Darktrace recognized the longer pattern of network scanning and alerted the customer immediately.

Advanced search view showing regular connections to closed ports over the scanning period.

Low and slow data exfiltration

At an industrial manufacturing company, a desktop was identified establishing over 2,000 connections to a rare host over a 7-day period. During this time, a total of 9.15GB of data was transferred externally. No single connection transmitted more than a few MB of data – an amount which, if viewed in isolation, would not be cause for concern. However, the destination for these connections was 100% rare for the network and maintained that level of rarity for the entire period of exfiltration. This not only flagged the activity as initially suspicious, but also prevented it from being absorbed into legitimate traffic. Combined with the accumulated volume of data leaving the network, Darktrace AI identified this as significant deviation in the device’s behavior, indicating a threat in progress.

Steady exfiltration of data over a 7-day period.

A series of model breaches (orange circles) occurring throughout the period of steady external data exfiltration (blue line).

Low and slow command and control

Darktrace is extremely successful in finding malware infections before they appear on open-source threat lists, a crucial ability when stopping the most serious, never-before-seen threats. This is achieved in large part by detecting beaconing patterns rather than relying on signatures. Beaconing occurs when a malicious program attempts to establish contact with its online infrastructure. Similar to network scanning, it creates a surge in outgoing connections.

Darktrace was deployed in a corporate network where a device was found making connections at steady intervals to a malicious browser extension. The average rate of connection was 11 connections every 4 hours – a low activity level which could easily have blended into legitimate internet traffic. Having identified the regularity of these connections, Darktrace’s AI assigned a high beaconing score, which indicated that they were likely initiated by an automated process. If we include the fact that the destination was rare, it became clear that this was caused by a malicious background program that was running unbeknownst to the user.

As cyber security advances, attackers will develop increasingly sophisticated methods to operate under the radar. Traditional cyber security tools which work in binary ways based on historical data – either the upload exceeded a predefined limit or not – cannot keep up. This new era will see AI proven crucial because of its ability to learn a constantly-evolving ‘pattern of life’ for a network over the duration of its deployment. This allows Darktrace AI to effectively locate the disturbances in connectivity levels – no matter how small – that have been caused by malicious or non-compliant activity. Fundamentally, this enables Darktrace to discover in-progress attacks and then autonomously respond, neutralizing them before they become a crisis.

High-profile, fast-moving attacks like NotPetya and WannaCry have encouraged some organizations to focus on preventing certain types of threat, at the expense of others – and hackers are catching on. By leveraging powerful AI, Darktrace empowers customers to prevent not just the fastest-moving attacks, but also the slowest and subtlest.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
No items found.
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

OT

/

April 4, 2025

Darktrace Named as Market Leader in the 2025 Omdia Market Radar for OT Cybersecurity Platforms

Default blog imageDefault blog image

We are pleased to announce that Darktrace / OT has been named a Market Leader in Omdia’s  2025 Market Radar for OT Cybersecurity Platforms. We believe this highlights our unique capabilities in the OT security market and follows similar recognition from Gartner who recently named Darktrace / OT as the sole Visionary in in the Magic Quadrant for Cyber Physical Systems (CPS) Protection Platforms market.

Historically, IT and OT systems have been managed separately, creating challenges due to the differences of priorities between the two domains. While both value availability, IT emphasizes confidentiality and integrity whereas OT focuses on safety and reliability. Organizations are increasingly converging these systems to reap the benefits of automation, efficiency, and productivity (1).

Omdia’s research highlights that decision makers are increasingly prioritizing comprehensive security coverage, centralized management, and advanced cybersecurity capabilities when selecting OT security solutions (1).

Rising productivity demands have driven the convergence of OT, IT, and cloud-connected systems, expanding attack surfaces and exposing vulnerabilities. Darktrace / OT provides a comprehensive OT security solution, purpose-built for critical infrastructure, offering visibility across OT, IoT, and IT assets, bespoke risk management, and industry-leading threat detection and response powered by Self-Learning AITM.

Figure 1: Omdia vendor overview for OT cybersecurity platforms
Figure 1: Omdia vendor overview for OT cybersecurity platforms

An AI-first approach to OT security  

Many OT security vendors have integrated AI into their offerings, often leveraging machine learning for anomaly detection and threat response. However, only a few have a deep-rooted history in AI, with longstanding expertise shaping their approach beyond surface-level adoption.

The Omdia Market Radar recognizes that Darktrace has extensive background in the AI space:

“Darktrace has invested extensively in AI research to fuel its capabilities since 2013 with 200-plus patent applications, providing anomaly detection with a significant level of customization, helping with SOC productivity and efficiency, streamlining to show what matters for OT.” (1)

Unlike other security approaches that rely on existing threat data, Darktrace / OT achieves this through Self-Learning AI that understands normal business operations, detecting and containing known and unknown threats autonomously, thereby reducing Sec Ops workload and ensuring minimal downtime

This approach extends to incident investigations where an industry-first Cyber AI AnalystTM automatically investigates all relevant threats across IT and OT, prioritizes critical incidents, and then summarizes findings in an easily understandable view—bringing production engineers and security analysts together to communicate and quickly take appropriate action.

Balancing autonomous response with human oversight

In OT environments where uptime is essential, autonomous response technology can be approached with apprehension. However, Darktrace offers customizable response actions that can be set to “human confirmation mode.”

Omdia recognizes that our approach provides customizable options for autonomous response:

“Darktrace’s autonomous response functionality enforces normal, expected behavior. This can be automated but does not need to be from the beginning, and it can be fine-tuned. Alternative step-by-step mitigations are clearly laid out step-by-step and updated based on organizational risk posture and current level of progress.” (1)

This approach allows security and production to keep humans-in-the-loop with pre-defined actions for potential attacks, enforcing normal to contain a threat, and allowing production to continue without disruption.  

Bespoke vulnerability and risk management

In the realm of OT security, asset management takes precedent as one of the key focus points for organizations. With a large quantity of assets to manage, practitioners are overwhelmed with information with no real way to prioritize or apply them to their unique environment.

Darktrace / OT is recognized by Omdia as having:

“Advanced risk management capabilities that showcase metrics on impact, exploit difficulty, and estimated cost of an attack […] Given the nascency of this capability (April 2024), it is remarkably granular in depth and insight.” (1)

Enabling this is Darktrace’s unique approach to AI extends to risk management capabilities for OT. Darktrace / OT understands customers’ unique risks by building a comprehensive and contextualized picture that goes beyond isolated CVE scoring. It combines attack path modeling with MITRE ATT&CK  techniques to provide hardening recommendations regardless of patching availability and gives you a clearer view of the potential impact of an attack from APT groups.

Modular, scalable security for industrial environments

Organizations need flexibility when it comes to OT security, some want a fully integrated IT-OT security stack, while others prefer a segregated approach due to compliance or operational concerns. The Darktrace ActiveAI Security Platform offers integrated security across multiple domains, allowing flexibility and unification across IT and OT security. The platform combines telemetry from all areas of your digital estate to detect and respond to threats, including OT, network, cloud, email, and user identities.

Omdia recognizes Darktrace’s expansive coverage across multiple domains as a key reason why organizations should consider Darktrace / OT:

“Darktrace’s modular and platform, approach offer’s integrated security across multiple domains. It offers the option of Darktrace / OT as a separate platform product for those that want to segregate IT and OT cybersecurity or are not yet in a position to secure both domains in tandem. The deployment of Darktrace’s platform is flexible—with nine different deployment options, including physical on-premises, virtual, cloud, and hybrid.” (1)

With flexible deployment options, Darktrace offers security teams the ability to choose a model that works best for their organization, ensuring that security doesn’t have to be a “one-size-fits-all” approach.

Conclusion: Why Darktrace / OT stands out in Omdia’s evaluation

Omdia’s 2025 Market Radar for OT Cybersecurity Platforms provides a technical-first, vendor-agnostic evaluation, offering critical insights for organizations looking to strengthen their OT security posture. Darktrace’s recognition as a Market Leader reinforces its unique AI-driven approach, flexible deployment options, and advanced risk management capabilities as key differentiators in an evolving threat landscape.

By leveraging Self-Learning AI, autonomous response, and real-world risk analysis, Darktrace / OT enables organizations to detect, investigate, and mitigate threats before they escalate, without compromising operational uptime.

Read the full report here!

References

  1. www.darktrace.com/resources/darktrace-named-a-market-leader-in-the-2025-omdia-market-radar-for-ot-cybersecurity-platforms
Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Cloud

/

April 2, 2025

Fusing Vulnerability and Threat Data: Enhancing the Depth of Attack Analysis

Default blog imageDefault blog image

Cado Security, recently acquired by Darktrace, is excited to announce a significant enhancement to its data collection capabilities, with the addition of a vulnerability discovery feature for Linux-based cloud resources. According to Darktrace’s Annual Threat Report 2024, the most significant campaigns observed in 2024 involved the ongoing exploitation of significant vulnerabilities in internet-facing systems. Cado’s new vulnerability discovery capability further deepens its ability to provide extensive context to security teams, enabling them to make informed decisions about threats, faster than ever.

Deep context to accelerate understanding and remediation

Context is critical when understanding the circumstances surrounding a threat. It can also take many forms – alert data, telemetry, file content, business context (for example asset criticality, core function of the resource), and risk context, such as open vulnerabilities.

When performing an investigation, it is common practice to understand the risk profile of the resource impacted, specifically determining open vulnerabilities and how they may relate to the threat. For example, if an analyst is triaging an alert related to an internet-facing Webserver running Apache, it would greatly benefit the analyst to understand open vulnerabilities in the Apache version that is running, if any of them are exploitable, whether a fix is available, etc. This dataset also serves as an invaluable source when developing a remediation plan, identifying specific vulnerabilities to be prioritised for patching.

Data acquisition in Cado

Cado is the only platform with the ability to perform full forensic captures as well as utilize instant triage collection methods, which is why fusing host-based artifact data with vulnerability data is such an exciting and compelling development.

The vulnerability discovery feature can be run as part of an acquisition – full or triage – as well as independently using a fast ‘Scan only’ mode.

Figure 1: A fast vulnerability scan being performed on the acquired evidence

Once the acquisition has completed, the user will have access to a ‘Vulnerabilities’ table within their investigation, where they are able to view and filter open vulnerabilities (by Severity, CVE ID, Resource, and other properties), as well as pivot to the full Event Timeline. In the Event Timeline, the user will be able to identify whether there is any malicious, suspicious or other interesting activity surrounding the vulnerable package, given the unified timeline presents a complete chronological dataset of all evidence and context collected.

Figure 2: Vulnerabilities discovered on the acquired evidence
Figure 3: Pivot from the Vulnerabilities table to the Event Timeline provides an in-depth view of file and process data associated with the vulnerable package selected. In this example, Apache2.

Future work

In the coming months, we’ll be releasing initial versions of highly anticipated integrations between Cado and Darktrace, including the ability to ingest Darktrace / CLOUD alerts which will automatically trigger a forensic capture (as well as a vulnerability discovery) of the impacted assets.

To learn more about how Cado and Darktrace will combine forces, request a demo today.

Continue reading
About the author
Paul Bottomley
Director of Product Management, Cado
Your data. Our AI.
Elevate your network security with Darktrace AI