The latest escalation in the cyber arms race sees attackers choosing stealth over speed and cunning over chaos.
Introduction
The speed of today’s most advanced threats can be devastating. In the few minutes it takes a security analyst to step away from her screen to grab a coffee, ransomware can take down thousands of computers before human teams or traditional tools have the chance to respond. And while big, fast threats are more likely to grab the headlines, cyber-attacks which do the opposite can be just as dangerous. The latest escalation in the cyber arms race sees attackers choosing stealth over speed and cunning over chaos.
As defenders work to rapidly deploy new security and detection technologies, malware authors have been similarly innovative, working to find a means of evading them. New ‘low and slow’ attacks are able to bypass traditional security tools because each individual action compiling the larger threat is too small to detect. These attacks are designed to operate over a longer period of time – and by minimizing disruption to any data transfer or connectivity levels, they blend into legitimate traffic.
For advanced and well-resourced actors like nation states in search of valuable intellectual property or sensitive political records, subtle and prolonged exposure to the systems they attack is a significant benefit. When it comes to the most sophisticated threats, slow and steady really can win the race.
Nevertheless, detection of low and slow attacks is possible with advanced machine learning techniques. To do so, contextual knowledge is critical; by modeling the subtle and unique ‘patterns of life’ of every user, device, and the network as a whole, AI-powered defenses are, for the first time, winning this battle.
This blog explores how attackers use low and slow techniques during multiple stages of the kill chain to achieve their eventual goal. We examine three real-world case studies, drawn from over 7,000 deployments of the Enterprise Immune System, to demonstrate how cyber AI detects low and slow reconnaissance, data exfiltration, and command-and-control activity.
Low and slow reconnaissance
By monitoring the behavioral pattern of devices and users, Darktrace AI is able to learn an evolving profile for expected activity. Armed with this understanding of ‘normal’ for the network, it can then identify significant anomalies indicative of a threat. It does all this without relying on training sets of historical data, enabling the technology to spot threats that other tools miss.
On the network of a European financial services firm, Darktrace discovered a server conducting port scans of various internal computers. This type of network scanning is regularly performed for legitimate testing purposes by administrative devices, but it is also a tactic for attackers to identify vulnerabilities and points of compromise – an early stage of an attack.
Over a duration of 7 days, the server made around 214,000 failed connections to 276 unique devices. However, only a small number of ports were targeted per day. The attack was sequential, but slow over time. Measured in one day, the level of disturbance was minimal enough to evade all rules-based defenses. Nevertheless, by learning ‘self’ across the entire digital business over time, cyber AI can detect even the subtlest deviation from ‘normal’ relative to the individual device, user, or network. Darktrace recognized the longer pattern of network scanning and alerted the customer immediately.
Advanced search view showing regular connections to closed ports over the scanning period.
Low and slow data exfiltration
At an industrial manufacturing company, a desktop was identified establishing over 2,000 connections to a rare host over a 7-day period. During this time, a total of 9.15GB of data was transferred externally. No single connection transmitted more than a few MB of data – an amount which, if viewed in isolation, would not be cause for concern. However, the destination for these connections was 100% rare for the network and maintained that level of rarity for the entire period of exfiltration. This not only flagged the activity as initially suspicious, but also prevented it from being absorbed into legitimate traffic. Combined with the accumulated volume of data leaving the network, Darktrace AI identified this as significant deviation in the device’s behavior, indicating a threat in progress.
Steady exfiltration of data over a 7-day period.
A series of model breaches (orange circles) occurring throughout the period of steady external data exfiltration (blue line).
Low and slow command and control
Darktrace is extremely successful in finding malware infections before they appear on open-source threat lists, a crucial ability when stopping the most serious, never-before-seen threats. This is achieved in large part by detecting beaconing patterns rather than relying on signatures. Beaconing occurs when a malicious program attempts to establish contact with its online infrastructure. Similar to network scanning, it creates a surge in outgoing connections.
Darktrace was deployed in a corporate network where a device was found making connections at steady intervals to a malicious browser extension. The average rate of connection was 11 connections every 4 hours – a low activity level which could easily have blended into legitimate internet traffic. Having identified the regularity of these connections, Darktrace’s AI assigned a high beaconing score, which indicated that they were likely initiated by an automated process. If we include the fact that the destination was rare, it became clear that this was caused by a malicious background program that was running unbeknownst to the user.
As cyber security advances, attackers will develop increasingly sophisticated methods to operate under the radar. Traditional cyber security tools which work in binary ways based on historical data – either the upload exceeded a predefined limit or not – cannot keep up. This new era will see AI proven crucial because of its ability to learn a constantly-evolving ‘pattern of life’ for a network over the duration of its deployment. This allows Darktrace AI to effectively locate the disturbances in connectivity levels – no matter how small – that have been caused by malicious or non-compliant activity. Fundamentally, this enables Darktrace to discover in-progress attacks and then autonomously respond, neutralizing them before they become a crisis.
High-profile, fast-moving attacks like NotPetya and WannaCry have encouraged some organizations to focus on preventing certain types of threat, at the expense of others – and hackers are catching on. By leveraging powerful AI, Darktrace empowers customers to prevent not just the fastest-moving attacks, but also the slowest and subtlest.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Bytesize Security: Insider Threats in Google Workspace
What is an insider threat?
An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.
Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.
For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.
Attack overview: Insider threat
In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.
While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.
In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.
Conclusion
Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.
Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.
Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
Darktrace Model Detections
SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File
RansomHub Ransomware: Darktrace’s Investigation of the Newest Tool in ShadowSyndicate's Arsenal
What is ShadowSyndicate?
ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].
What is RansomHub?
First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].
ShadowSyndicate and RansomHub
External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].
Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].
In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.
Darktrace’s coverage of ShadowSyndicate and RansomHub
Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.
Attack Overview
Internal Reconnaissance
The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.
C2 Communication and Data Exfiltration
In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.
Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.
Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.
Lateral Movement
In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.
The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.
Figure 1: Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.
Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.
File Encryption
Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.
Figure 2: The graph shows the behavior of a device with encryption activity, using the “SMB Sustained Mimetype Conversion” and “Unusual Activity Events” metrics over three weeks.
Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.
Figure 3: Cyber AI Analyst panel showing the critical incidents of the affected device from one of the cases investigated.
In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.
Figure 4: A list of suggested Autonomous Response actions on the affected devices."
Conclusion
The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.
For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.
Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)