Blog
/
/
June 7, 2020

How Darktrace AI Identified Microsoft 365 Breaches

We cover two real cases on how Darktrace stopped Microsoft 365 account takeovers by correlating insights across SaaS applications & email activity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jun 2020

Social engineering’. ‘Credential theft’. ‘Account takeover’. If you were a fly on the wall of a Security Operations Center in 2020, you would have heard these phrases far more often than ‘banking trojan’, ‘SQL injection’ or ‘exploit kit’. The reason for this is simple – the reality for most security teams now is that their perimeter has shifted into the cloud. Identities are being attacked more than devices.

Microsoft 365 account compromise’ is the current favorite, with 29% of organizations reporting a related incident in one month alone. Security teams struggle with these attacks because the evidence needed to detect them is scattered across the enterprise: they begin via email, are executed over the network, and progress in the cloud. This broad and spread out digital footprint means that following the breadcrumbs is not easy.

Darktrace’s Cyber AI Platform is designed to understand a user’s behavior as they move between devices and cloud services, tracking their activity to identify a compromise. To help understand how these attacks avoid detection, it is useful to look at a couple of examples of Microsoft Office 365 compromise detected recently in one of our customers.

Microsoft 365 compromised to launch external email threat

A Microsoft 365 account was recently compromised at a public accounting firm based in the United States. Darktrace initially picked up on several anomalies, including a sudden surge in outbound email traffic as well as the unusual login location – while the company and nearly all of its users were located in Wisconsin, an IP address located in Kansas was used to log in to the Microsoft 365 account. Along with the unusual login, a login to Microsoft Teams from the same Kansas IP address was detected.

Figure 1: Just after the new email rule was created, a Microsoft Teams 100% rare IP login occurred.

‘Impossible travel’ rules alone would have missed these anomalies, but an understanding of activity and behavior across different SaaS applications allowed Darktrace’s AI to recognize these events as one systematic case of credential theft. When the threat-actor subsequently created a new email rule, Darktrace was able to connect this event with the other anomalous behavior and understand its potentially malicious nature.

Figure 2: Darktrace’s SaaS Module noted a 100% rare IP logging into the user’s Microsoft 365 account and the creation of a new mailbox rules. All factors indicated 100% unusual SaaS activity.

Five minutes later, Antigena Email alerted on a large number of outbound emails containing a generic subject line and an attached PDF. The technology also detected that there was a clear spike in outbound emails from this user and flagged each of these emails with the “Out of Character” tag, which in this case denoted a change from normal behavior with the surge in recipients, and likely internal compromise.

Figure 3: Antigena Email detected a surge in recipients that indicated a serious breach of normal behavior for this user.

The unusual login behavior detected by Darktrace’s SaaS Module could be connected to the anomalous outbound email behavior flagged by Antigena Email, allowing the security team to see the extent of the attack and neutralize it as it emerged. It was clear that the account was being used to engage in malicious activity, as each of the 220 outbound emails used a generic subject line and contained a suspicious attachment. The security team therefore immediately disabled the compromised account.

Figure 4: A recreation of the email sent by the attacker, containing the malicious attachment.

‘Change of bank details’ sent from accounts department

When an Accounts Department’s Microsoft 365 account was compromised and used to send targeted phishing emails, Darktrace was able to track the attacker’s movement within the inbox, tying together information from Darktrace’s SaaS Module with Antigena Email’s alerts to understand the full picture of the threat and stop the attack.

The SaaS account appears to have been compromised via an inbound spear phishing attack, or some other form of attack that occurred before Darktrace began monitoring the organization. While Darktrace Cyber AI had no oversight of the initial compromise, it was still able to distinguish later attacker behavior as malicious, based on its actively evolving understanding of the organization and its workforce.

When the account user logged in from a 100% rare French IP address, Darktrace’s SaaS Module picked up on the anomaly immediately, and further detected a series of activities carried out after the unusual login. At the same time, Antigena Email noted an email being sent.

Figure 5: The login from a French IP was noted as 100% rare for this user and SaaS account.

Darktrace then identified more activity occurring from a second rare login location, a Swiss IP address. Very little email activity occurred when the account was logged in from this IP. Instead, Cyber AI saw the threat-actor using their illegitimate SaaS access to view information on the legitimate account user and files related to banking, invoices, and payments.

Antigena Email then identified a series of email communications that, when seen in the context of the SaaS account compromise, pointed to a clear threat. There were no obvious malicious attachments or links in the emails. However, the subject of the final reply was ‘Change of Bank Details’, and the email prompted a high Solicitation Inducement Score within Antigena Email, strongly implying that the malicious actor had sent emails instructing the destination to change payment details in order to route money to the attacker, instead of the company.

It seems the attackers went through the banking and invoicing files in order to find a customer with a big bill to pay, then used the compromised email account to launch an outbound phishing attack, changing the billing details. With Darktrace AI correlating information within the SaaS platform and insights from Antigena Email, this targeted phishing attack could be contained before further compromise or damage could occur.

The below screenshot also indicates a series of inbox processing rules made on the compromised account, showing actions that are typical of an account takeover.

Figure 6: Darktrace’s records of new inbox rules being set up on the compromised SaaS account.

The benefits of a unified approach

These stories are all too familiar. Most security tools would not be able to take action on any one of these steps individually. But the combination reveals the tell-tale sign of a Microsoft 365 account hijack. Organizations are struggling to manage their user identities across their cloud infrastructure, and rule and policy-based detection is no longer feasible.

However, by learning identities and behavior across the enterprise, Darktrace is able to detect, and seamlessly respond, to combat these threats. Hundreds of organizations are now using Antigena Email to protect their email and cloud environments continuously, trusting it to dynamically enforce MFA, lock accounts, block network traffic, and withhold emails when necessary.

As cloud-native applications become more popular, organizations face the growing problem of separate end-to-end security solutions for each type of workload. With Antigena Email working in conjunction with Darktrace’s Enterprise Immune System, defenders can be assured that a single, unified platform is tracking every suspicious behavior, wherever it arises in the organization.

Learn more about Antigena Email

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI