Blog
/
AI
/
April 9, 2024

Moving Beyond XDR to Achieve True Cyber Resilience with Darktrace ActiveAI Security Platform

Announcing the new Darktrace ActiveAI Security Platform designed to transform security operations. This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, and operational technology (OT).
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mitchell Bezzina
VP, Product and Solutions Marketing
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Apr 2024

Evolving Threats Need Comprehensive Security

Attacker innovations have drastically increased the velocity, sophistication, and success of cyber security attacks, as seen with multi-domain and multi-stage attacks that are now widely used in adversary methodology.

When it comes to defense, traditional cyber security point solutions cannot keep up. They have a depth of intelligence in a specific domain but rely on existing attack data to detect threats. This allows the known to be stopped, but the uncertainty in identifying unknown threats creates an alert deluge. Security teams are then required to build processes to triage alerts, and manually combine data through APIs, integrations and rules – just to correlate incidents across multiple IT domains.

Traditional eXtended Detection and Response (XDR) rose to aid security teams, and while they are able to stitch together suspicious events from network, endpoint, and cloud, they still lack adequate domain coverage in areas such as email – where the majority of initial infection occurs – require human validation, prioritization, and triage, and ultimately remain reactive in nature.

Security teams are at a breaking point, with too many alerts, too little time, and fragmented support from a bloated vendor stack. Simply put, most organizations lack the human resources needed to maintain cyber resilience.

Introducing the Darktrace ActiveAI Security Platform

Darktrace ActiveAI Security was designed to transform security operations to a proactive state. Its AI trains on an organization’s specific business and IT information, learning the day-to-day normal operations, not yesterday's threat intelligence.

This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, identities, and operational technology (OT). With this understanding of the business, the AI can detect and respond to known and unknown threats with precision, even those threats never seen before.

Darktrace’s proactive and incident response tools help your team get ahead of security gaps and potential process risk by understanding your internal and external threat surfaces and identifying where preparedness can be improved.

A unique and patented investigative AI, called Cyber AI Analyst, operates across the platform to augment human teams with automation and efficiency gains, performing continuous investigations of prevalent alerts to redefine the SecOps workflow and help security analysts arrive at decisions quickly.  An extensive range of services aid customer resources in getting the most out of the Darktrace ActiveAI Security Platform.

Figure 1: Powered by a self-learning AI that understands your unique business, the Darktrace ActiveAI Security Platform provides coverage across the entire enterprise. Cyber AI Analyst, our investigative AI, investigates relevant alerts helping human security teams triage and prioritize all relevant alerts, even those from 3rd party security tools, to transform security operations.

Security operations and the incident lifecycle

SOC teams have three general areas of focus, and each can be supported by Darktrace ActiveAI Security

1. The benefits of being proactive

Darktrace ActiveAI Security helps teams become proactive by identifying and closing gaps before they are exploited. This reduces the impact and cost of attacks.  

The platform achieves this by looking at each organization to understand potential human and machine entry points for an attacker. In an upcoming update, our technology will also include firewall rule analysis for more precise attack path modeling.

The AI considers its findings with local business and IT context to identify the most risky and impactful devices, identities, and vulnerabilities, so teams can prioritize what to patch first.

Additionally, Darktrace ActiveAI Security boosts proactivity with incident readiness, supporting each organization’s people, processes, and technology with training simulations, dynamic playbooks, and readiness reports.

2. Complete visibility of known and novel threats

Darktrace ActiveAI Security Platform drives efficiencies during the active incident phase, saving time and effort while providing comprehensive and tailored protection. It applies context from enterprise data, ingested from both native sources (email, cloud, operational technology, endpoints, identity, applications, and networks) and external sources (third-party security tools and intelligence) to detect known, novel, and unknown threats.

Other security vendors aggregate and generalize data across their customers, treating threat detection with a big data approach. They extract intelligence, write new rules and signatures, and train their supervised machine running in the cloud. Only after that do they distribute new detections based on the changes in the threat landscape. That leaves a window of opportunity for attackers. For example, when Log4J struck, most vendors needed precious time to catch up and defend against it

Contrast that to Darktrace’s approach to detection. Our AI continuously trains on each organization’s unique business data, allowing it to function beyond known attacks in the threat landscape. Therefore, our AI can defend organizations even against attacks that have never been seen before because it focuses on each customer’s data instead of trying to win this big data problem.

While our AI has always been able to surface threats without needing to decrypt traffic, because it can surface anomalies in the characteristics of the overall communication, an upcoming update will soon make decryption possible for deeper forensic analysis.

This also leads to massive efficiency wins. For example, self-regulation and detection accuracy. If our AI keeps seeing certain types of anomalies in an environment, and if those are part of a legitimate business process, the AI will autonomously start lowering the alert severity, therefore reducing the burden on security teams to fine-tune detection and alerting.

3. AI-led investigation and response

Darktrace ActiveAI Security Platform helps teams triage, investigate, and respond to accelerate response time and reduce disruption.

Traditional security stacks use a lot of raw data combined with threat intelligence, like rules and signatures and supervised detections. The results are then put together and presented to the human team, who still needs to triage, understand, and investigate the situation.

Darktrace customers natively ingest raw data, apply anomaly detection and business learning, then build chains of generic anomalies which could include threat intelligence of third-party alerts. Those are then continuously investigated by our Cyber AI Analyst and put forward for human verification and actioning of next steps if they are deemed critical. This simplifies the triage process to save investigation time.

An upcoming feature for the Cyber AI Analyst allows teams to customize how it investigates each threat type, such as configuring what type of hypotheses are being run – giving teams more control. The result is a complete transformation of the triage process, where every relevant alert is investigated for the security team, those critical are prioritized for action, others await secondary investigation, or allow analysts to proactively review security gaps to stop future attacks of the same attack paths.

Last but not least, we help drive efficiencies by automating threat response with behavioral containment. That means our AI can identify and stop unusual behavior that indicates a threat while still allowing normal benign business activity to continue, all without the security team’s having to predefine every conceivable reaction.

Conclusion

Darktrace ActiveAI Security is a native, holistic, AI-driven platform built on over ten years of AI research. It helps security teams shift to more a productive mode, finding known and unknown attacks and transforming the SOC to drive efficiency gains. It does this across the whole incident lifecycle to lower risk, reduce time spent on active incidents, and drive return on investment.

For more information on the Darktrace Platform, download the solution brief here.

Join over 9,000 customers who have started their journey to the Darktrace ActiveAI Security Platform by selecting one of our leading cybersecurity solutions in Email Security, Network Detection and Response, Cloud Native Application Protection, and OT Security.

Discover more about our ever-strengthening platform with the upcoming changes coming to Darktrace/Email and Darktrace/OT.

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mitchell Bezzina
VP, Product and Solutions Marketing

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI