Moving Beyond XDR to Achieve True Cyber Resilience with Darktrace ActiveAI Security Platform
09
Apr 2024
Announcing the new Darktrace ActiveAI Security Platform designed to transform security operations. This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, and operational technology (OT).
Evolving Threats Need Comprehensive Security
Attacker innovations have drastically increased the velocity, sophistication, and success of cyber security attacks, as seen with multi-domain and multi-stage attacks that are now widely used in adversary methodology.
When it comes to defense, traditional cyber security point solutions cannot keep up. They have a depth of intelligence in a specific domain but rely on existing attack data to detect threats. This allows the known to be stopped, but the uncertainty in identifying unknown threats creates an alert deluge. Security teams are then required to build processes to triage alerts, and manually combine data through APIs, integrations and rules – just to correlate incidents across multiple IT domains.
Traditional eXtended Detection and Response (XDR) rose to aid security teams, and while they are able to stitch together suspicious events from network, endpoint, and cloud, they still lack adequate domain coverage in areas such as email – where the majority of initial infection occurs – require human validation, prioritization, and triage, and ultimately remain reactive in nature.
Security teams are at a breaking point, with too many alerts, too little time, and fragmented support from a bloated vendor stack. Simply put, most organizations lack the human resources needed to maintain cyber resilience.
Darktrace ActiveAI Security was designed to transform security operations to a proactive state. Its AI trains on an organization’s specific business and IT information, learning the day-to-day normal operations, not yesterday's threat intelligence.
This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, identities, and operational technology (OT). With this understanding of the business, the AI can detect and respond to known and unknown threats with precision, even those threats never seen before.
Darktrace’s proactive and incident response tools help your team get ahead of security gaps and potential process risk by understanding your internal and external threat surfaces and identifying where preparedness can be improved.
A unique and patented investigative AI, called Cyber AI Analyst, operates across the platform to augment human teams with automation and efficiency gains, performing continuous investigations of prevalent alerts to redefine the SecOps workflow and help security analysts arrive at decisions quickly. An extensive range of services aid customer resources in getting the most out of the Darktrace ActiveAI Security Platform.
Security operations and the incident lifecycle
SOC teams have three general areas of focus, and each can be supported by Darktrace ActiveAI Security
1. The benefits of being proactive
Darktrace ActiveAI Security helps teams become proactive by identifying and closing gaps before they are exploited. This reduces the impact and cost of attacks.
The platform achieves this by looking at each organization to understand potential human and machine entry points for an attacker. In an upcoming update, our technology will also include firewall rule analysis for more precise attack path modeling.
The AI considers its findings with local business and IT context to identify the most risky and impactful devices, identities, and vulnerabilities, so teams can prioritize what to patch first.
Additionally, Darktrace ActiveAI Security boosts proactivity with incident readiness, supporting each organization’s people, processes, and technology with training simulations, dynamic playbooks, and readiness reports.
2. Complete visibility of known and novel threats
Darktrace ActiveAI Security Platform drives efficiencies during the active incident phase, saving time and effort while providing comprehensive and tailored protection. It applies context from enterprise data, ingested from both native sources (email, cloud, operational technology, endpoints, identity, applications, and networks) and external sources (third-party security tools and intelligence) to detect known, novel, and unknown threats.
Other security vendors aggregate and generalize data across their customers, treating threat detection with a big data approach. They extract intelligence, write new rules and signatures, and train their supervised machine running in the cloud. Only after that do they distribute new detections based on the changes in the threat landscape. That leaves a window of opportunity for attackers. For example, when Log4J struck, most vendors needed precious time to catch up and defend against it
Contrast that to Darktrace’s approach to detection. Our AI continuously trains on each organization’s unique business data, allowing it to function beyond known attacks in the threat landscape. Therefore, our AI can defend organizations even against attacks that have never been seen before because it focuses on each customer’s data instead of trying to win this big data problem.
While our AI has always been able to surface threats without needing to decrypt traffic, because it can surface anomalies in the characteristics of the overall communication, an upcoming update will soon make decryption possible for deeper forensic analysis.
This also leads to massive efficiency wins. For example, self-regulation and detection accuracy. If our AI keeps seeing certain types of anomalies in an environment, and if those are part of a legitimate business process, the AI will autonomously start lowering the alert severity, therefore reducing the burden on security teams to fine-tune detection and alerting.
3. AI-led investigation and response
Darktrace ActiveAI Security Platform helps teams triage, investigate, and respond to accelerate response time and reduce disruption.
Traditional security stacks use a lot of raw data combined with threat intelligence, like rules and signatures and supervised detections. The results are then put together and presented to the human team, who still needs to triage, understand, and investigate the situation.
Darktrace customers natively ingest raw data, apply anomaly detection and business learning, then build chains of generic anomalies which could include threat intelligence of third-party alerts. Those are then continuously investigated by our Cyber AI Analyst and put forward for human verification and actioning of next steps if they are deemed critical. This simplifies the triage process to save investigation time.
An upcoming feature for the Cyber AI Analyst allows teams to customize how it investigates each threat type, such as configuring what type of hypotheses are being run – giving teams more control. The result is a complete transformation of the triage process, where every relevant alert is investigated for the security team, those critical are prioritized for action, others await secondary investigation, or allow analysts to proactively review security gaps to stop future attacks of the same attack paths.
Last but not least, we help drive efficiencies by automating threat response with behavioral containment. That means our AI can identify and stop unusual behavior that indicates a threat while still allowing normal benign business activity to continue, all without the security team’s having to predefine every conceivable reaction.
Conclusion
Darktrace ActiveAI Security is a native, holistic, AI-driven platform built on over ten years of AI research. It helps security teams shift to more a productive mode, finding known and unknown attacks and transforming the SOC to drive efficiency gains. It does this across the whole incident lifecycle to lower risk, reduce time spent on active incidents, and drive return on investment.
Join over 9,000 customers who have started their journey to the Darktrace ActiveAI Security Platform by selecting one of our leading cybersecurity solutions in Email Security, Network Detection and Response, Cloud Native Application Protection, and OT Security.
Discover more about our ever-strengthening platform with the upcoming changes coming to Darktrace/Email and Darktrace/OT.
Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-2012 and 2024-9474)
Introduction: Spike in exploitation and post-exploitation activity affecting Palo Alto firewall devices
As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.
More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.
Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.
How did exploitation occur?
CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by supplying an HTTP request where a Palo Alto related authentication header can be set to “off”. Users can supply this header value to the Nginx reverse proxy server fronting the application which will then send it without any prior processing [1].
CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device [2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.
Post-Exploitation Patterns of Activity
Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:
Exploit validation and initial payload retrieval
Command and control (C2) connectivity, potentially featuring further binary downloads
Potential reconnaissance and cryptomining activity
Exploit Validation
Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.
Initial Payload Retrieval
Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.
In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.
While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.
The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server.
While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP 38.180.147[.]18.
Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Spectre RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft [3][4].
Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.
These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying an incorrect certificate to the requesting client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests a potentially malicious running process as most software establishing TLS sessions typically supply this information during the handshake. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget [5].
C2 Communication and Additional Payloads
Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.
Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.
These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliverand Gzip formatting.
For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [6]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.
External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.
Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.
Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [7]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.
Reconnaissance and Cryptomining
Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.
Conclusion
Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.
Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.
Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.
Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.
Cloud Security: Addressing Common CISO Challenges with Advanced Solutions
Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.
1. Misconfigurations: The Silent Saboteur
Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80% of data breaches involved data stored in the cloud.1 Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.
How Darktrace / CLOUD Helps:
Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.
2. Hybrid Environments: The Migration Maze
Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.
How Darktrace / CLOUD Helps:
Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.
This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.
3. Securing Productivity Suites: The Last Mile
Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.
How Darktrace helps:
Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:
• Unusual file accesses
• Anomalous login attempts from unexpected locations or devices.
• Suspicious email forwarding rules created by compromised accounts.
Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.
4. Agent Fatigue: The Visibility Struggle
To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.
How Darktrace / CLOUD Helps:
Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.
So why Darktrace / CLOUD?
Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.
From Chaos to Clarity
Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.