Blog

Inside the SOC

Enemies on Our Teams: Darktrace Stops DarkGate Malware through Microsoft Teams

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Dec 2023
15
Dec 2023
This blog discusses how Darktrace was able to detect and respond to malicious attempts to use Microsoft Teams and Sharepoint to deliver the DarkGate malware onto a customer network in September 2023.

Securing Microsoft Teams and SharePoint

Given the prevalence of the Microsoft Teams and Microsoft SharePoint platforms in the workplace in recent years, it is essential that organizations stay vigilant to the threat posed by applications vital to hybrid and remote work and prioritize the security and cyber hygiene of these services. For just as the use of these platforms has increased exponentially with the rise of remote and hybrid working, so too has the malicious use of them to deliver malware to unassuming users.

Researchers across the threat landscape have begun to observe these legitimate services being leveraged by malicious actors as an initial access method. Microsoft Teams can easily be exploited to send targeted phishing messages to individuals within an organization, while appearing legitimate and safe. Although the exact contents of these messages may vary, the messages frequently use social engineering techniques to lure users to click on a SharePoint link embedded into the message. Interacting with the malicious link will then download a payload [1].

Darktrace observed one such malicious attempt to use Microsoft Teams and SharePoint in September 2023, when a device was observed downloading DarkGate, a commercial trojan that is known to deploy other strains of malware, also referred to as a commodity loader [2], after clicking on SharePoint link. Fortunately for the customer, Darktrace’s suite of products was perfectly poised to identify the initial signs of suspicious activity and Darktrace RESPOND™ was able to immediately halt the advancement of the attack.

DarkGate Attack Overview

On September 8, 2023, Darktrace DETECT™ observed around 30 internal devices on a customer network making unusual SSL connections to an external SharePoint site which contained the name of a person, 'XXXXXXXX-my.sharepoint[.]com' (107.136[.]8, 13.107.138[.]8). The organization did not have any employees who went by this name and prior to this activity, no internal devices had been seen contacting the endpoint.

At first glance, this initial attack vector would have appeared subtle and seemingly trustworthy to users. Malicious actors likely sent various users a phishing message via Microsoft Teams that contained the spoofed SharePoint link to the personalized SharePoint link ''XXXXXXXX-my.sharepoint[.]com'.

Figure 1: Advanced Search query showing a sudden spike in connections to ''XXXXXXXX -my.sharepoint[.]com'.

Darktrace observed around 10 devices downloading approximately 1 MB of data during their connections to the Sharepoint endpoint. Darktrace DETECT observed some of the devices making subsequent HTTP GET requests to a range of anomalous URIs. The devices utilized multiple user-agents for these connections, including ‘curl’, a command line tool that allows individuals to request and transfer data from a specific URL. The connections were made to the IP 5.188.87[.]58, an endpoint that has been flagged as an indicator of compromise (IoC) for DarkGate malware by multiple open-source intelligence (OSINT) sources [3], commonly associated with HTTP GET requests:

  1. GET request over port 2351 with the User-Agent header 'Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5)' and the target URI '/bfyxraav' to 5.188.87[.]58
  2. GET request over port 2351 with the user-agent header 'curl' and the target URI '/' to 5.188.87[.]58
  3. GET request over port 2351 with the user-agent header 'curl/8.0.1' and the target URI '/msibfyxraav' to 5.188.87[.]58

The HTTP GET requests made with the user-agent header 'curl' and the target URI '/' to 5.188.87[.]58 were responded to with a filename called 'Autoit3.exe'. The other requests received script files with names ending in '.au3, such as 'xkwtvq.au3', 'otxynh.au3', and 'dcthbq.au3'. DarkGate malware has been known to make use of legitimate AutoIt files, and typically runs multiple AutoIt scripts (‘.au3’) [4].

Following these unusual file downloads, the devices proceeded to make hundreds of HTTP POST requests to the target URI '/' using the user-agent header 'Mozilla/4.0 (compatible; Synapse)' to 5.188.87[.]58. The contents of these requests, along with the contents of the responses, appear to be heavily obfuscated.

Figure 2: Example of obfuscated response, as shown in a packet capture downloaded from Darktrace.

While Microsoft’s Safe Attachments and Safe Links settings were unable to detect this camouflaged malicious activity, Darktrace DETECT observed the unusual over-the-network connectivity that occurred. While Darktrace DETECT identified multiple internal devices engaging in this anomalous behavior throughout the course of the compromise, the activity observed on one device in particular best showcases the overall kill chain of this attack.

The device in question was observed using two different user agents (curl/8.0.1 and Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5)) when connecting to the endpoint 5.188.87[.]58 and target URI ‘/bfyxraav’. Additionally, Darktrace DETECT recognized that it was unusual for this device to be making these HTTP connections via destination port 2351.

As a result, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the suspicious activity and was able to connect the unusual external connections together, viewing them as one beaconing incident as opposed to isolated series of connections.

Figure 3: Cyber AI Analyst investigation summarizing the unusual repeated connections made to 5.188.87[.]58 via destination port 2351.

Darktrace then observed the device downloading the ‘Autoit3.exe’ file. Darktrace RESPOND took swift mitigative action by blocking similar connections to this endpoint, preventing the device from downloading any additional suspicious files.

Figure 4: Suspicious ‘Autoit3.exe’ downloaded by the source device from the malicious external endpoint.

Just one millisecond later, Darktrace observed the device making suspicious HTTP GET requests to URIs including ‘/msibfyxraav’. Darktrace recognized that the device had carried out several suspicious actions within a relatively short period of time, breaching multiple DETECT models, indicating that it may have been compromised. As a result, RESPOND took action against the offending device by preventing it from communicating externally [blocking all outbound connections] for a period of one hour, allowing the customer’s security team precious time to address the issue.

It should be noted that, at this point, had the customer subscribed to Darktrace’s Proactive Threat Notification (PTN) service, the Darktrace Security Operations Center (SOC) would have investigated these incidents in greater detail, and likely would have sent a notification directly to the customer to inform them of the suspicious activity.

Additionally, AI Analyst collated various distinct events and suggested that these stages were linked as part of an attack. This type of augmented understanding of events calculated at machine speed is extremely valuable since it likely would have taken a human analyst hours to link all the facets of the incident together.  

Figure 5: AI Analyst investigation showcasing the use of the ‘curl’ user agent to connect to the target URI ‘/msibfyxraav’.
Figure 6: Darktrace RESPOND moved to mitigate any following connections by blocking all outgoing traffic for 1 hour.

Following this, an automated investigation was launched by Microsoft Defender for Endpoint. Darktrace is designed to coordinate with multiple third-party security tools, allowing for information on ongoing incidents to be seamlessly exchanged between Darktrace and other security tools. In this instance, Microsoft Defender identified a ‘low severity’ incident on the device, this automatically triggered a corresponding alert within DETECT, presented on the Darktrace Threat Visuallizer.

The described activity occurred within milliseconds. At each step of the attack, Darktrace RESPOND took action either by enforcing expected patterns of life [normality] on the affected device, blocking connections to suspicious endpoints for a specified amount of time, and/or blocking all outgoing traffic from the device. All the relevant activity was detected and promptly stopped for this device, and other compromised devices, thus containing the compromise and providing the security team invaluable remediation time.

Figure 7: Overview of the compromise activity, all of which took place within a matter of miliseconds.

Darktrace identified similar activity on other devices in this customer’s network, as well as across Darktrace’s fleet around the same time in early September.

On a different customer environment, Darktrace DETECT observed more than 25 ‘.au3’ files being downloaded; this activity can be seen in Figure 9.

Figure 8: High volume of file downloads following GET request and 'curl' commands.

Figure 9 provides more details of this activity, including the source and destination IP addresses (5.188.87[.]58), the destination port, the HTTP method used and the MIME/content-type of the file

Figure 9: Additional information of the anomalous connections.

A compromised server in another customer deployment was seen establishing unusual connections to the external IP address 80.66.88[.]145 – an endpoint that has been associated with DarkGate by OSINT sources [5]. This activity was identified by Darktrace/DETECT as a new connection for the device via an unusual destination port, 2840. As the device in question was a critical server, Darktrace DETECT treated it with suspicion and generated an ‘Anomalous External Activity from Critical Network Device’ model breach.  

Figure 10: Model breach and model breach event log for suspicious connections to additional endpoint.

Conclusion

While Microsoft Teams and SharePoint are extremely prominent tools that are essential to the business operations of many organizations, they can also be used to compromise via living off the land, even at initial intrusion. Any Microsoft Teams user within a corporate setting could be targeted by a malicious actor, as such SharePoint links from unknown senders should always be treated with caution and should not automatically be considered as secure or legitimate, even when operating within legitimate Microsoft infrastructure.

Malicious actors can leverage these commonly used platforms as a means to carry out their cyber-attacks, therefore organizations must take appropriate measures to protect and secure their digital environments. As demonstrated here, threat actors can attempt to deploy malware, like DarkGate, by targeting users with spoofed Microsoft Teams messages. By masking malicious links as legitimate SharePoint links, these attempts can easily convince targets and bypass traditional security tools and even Microsoft’s own Safe Links and Safe Attachments security capabilities.

When the chain of events of an attack escalates within milliseconds, organizations must rely on AI-driven tools that can quickly identify and automatically respond to suspicious events without latency. As such, the value of Darktrace DETECT and Darktrace RESPOND cannot be overstated. Given the efficacy and efficiency of Darktrace’s detection and autonomous response capabilities, a more severe network compromise in the form of the DarkGate commodity loader was ultimately averted.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Zoe Tilsiter.

Appendices

Darktrace DETECT Model Detections

  • [Model Breach: Device / Initial Breach Chain Compromise 100% –– Breach URI: /#modelbreach/114039 ] (Enhanced Monitoring)·      [Model Breach: Device / Initial Breach Chain Compromise 100% –– Breach URI: /#modelbreach/114124 ] (Enhanced Monitoring)
  • [Model Breach: Device / New User Agent and New IP 62% –– Breach URI: /#modelbreach/114030 ]
  • [Model Breach: Anomalous Connection / Application Protocol on Uncommon Port 46% –– Breach URI: /#modelbreach/114031 ]
  • [Model Breach: Anomalous Connection / New User Agent to IP Without Hostname 62% –– Breach URI: /#modelbreach/114032 ]
  • [Model Breach: Device / New User Agent 32% –– Breach URI: /#modelbreach/114035 ]
  • [Model Breach: Device / Three Or More New User Agents 31% –– Breach URI: /#modelbreach/114036 ]
  • [Model Breach: Anomalous Server Activity / Anomalous External Activity from Critical Network Device 62% –– Breach URI: /#modelbreach/612173 ]
  • [Model Breach: Anomalous File / EXE from Rare External Location 61% –– Breach URI: /#modelbreach/114037 ]
  • [Model Breach: Anomalous Connection / Multiple Connections to New External TCP Port 61% –– Breach URI: /#modelbreach/114042 ]
  • [Model Breach: Security Integration / Integration Ransomware Detected 100% –– Breach URI: /#modelbreach/114049 ]
  • [Model Breach: Compromise / Beaconing Activity To External Rare 62% –– Breach URI: /#modelbreach/114059 ]
  • [Model Breach: Compromise / HTTP Beaconing to New Endpoint 30% –– Breach URI: /#modelbreach/114067 ]
  • [Model Breach: Security Integration / C2 Activity and Integration Detection 100% –– Breach URI: /#modelbreach/114069 ]
  • [Model Breach: Anomalous File / EXE from Rare External Location 55% –– Breach URI: /#modelbreach/114077 ]
  • [Model Breach: Compromise / High Volume of Connections with Beacon Score 66% –– Breach URI: /#modelbreach/114260 ]
  • [Model Breach: Security Integration / Low Severity Integration Detection 59% –– Breach URI: /#modelbreach/114293 ]
  • [Model Breach: Security Integration / Low Severity Integration Detection 33% –– Breach URI: /#modelbreach/114462 ]
  • [Model Breach: Security Integration / Integration Ransomware Detected 100% –– Breach URI: /#modelbreach/114109 ]·      [Model Breach: Device / Three Or More New User Agents 31% –– Breach URI: /#modelbreach/114118 ]·      [Model Breach: Anomalous Connection / Application Protocol on Uncommon Port 46% –– Breach URI: /#modelbreach/114113 ] ·      [Model Breach: Anomalous Connection / New User Agent to IP Without Hostname 62% –– Breach URI: /#modelbreach/114114 ]·      [Model Breach: Device / New User Agent 32% –– Breach URI: /#modelbreach/114117 ]·      [Model Breach: Anomalous File / EXE from Rare External Location 61% –– Breach URI: /#modelbreach/114122 ]·      [Model Breach: Security Integration / Low Severity Integration Detection 54% –– Breach URI: /#modelbreach/114310 ]
  • [Model Breach: Security Integration / Integration Ransomware Detected 65% –– Breach URI: /#modelbreach/114662 ]Darktrace/Respond Model Breaches
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious File Block 61% –– Breach URI: /#modelbreach/114033 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena File then New Outbound Block 100% –– Breach URI: /#modelbreach/114038 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block 100% –– Breach URI: /#modelbreach/114040 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block 87% –– Breach URI: /#modelbreach/114041 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach 87% –– Breach URI: /#modelbreach/114043 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Ransomware Block 100% –– Breach URI: /#modelbreach/114052 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Significant Security Integration and Network Activity Block 87% –– Breach URI: /#modelbreach/114070 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Breaches Over Time Block 87% –– Breach URI: /#modelbreach/114071 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious Activity Block 87% –– Breach URI: /#modelbreach/114072 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious File Block 53% –– Breach URI: /#modelbreach/114079 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Breaches Over Time Block 64% –– Breach URI: /#modelbreach/114539 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Ransomware Block 66% –– Breach URI: /#modelbreach/114667 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious Activity Block 79% –– Breach URI: /#modelbreach/114684 ]·      
  • [Model Breach: Antigena / Network::External Threat::Antigena Ransomware Block 100% –– Breach URI: /#modelbreach/114110 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block 87% –– Breach URI: /#modelbreach/114111 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach 87% –– Breach URI: /#modelbreach/114115 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Breaches Over Time Block 87% –– Breach URI: /#modelbreach/114116 ]·      
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious File Block 61% –– Breach URI: /#modelbreach/114121 ]·      
  • [Model Breach: Antigena / Network::External Threat::Antigena File then New Outbound Block 100% –– Breach URI: /#modelbreach/114123 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block 100% –– Breach URI: /#modelbreach/114125 ]

List of IoCs

IoC - Type - Description + Confidence

5.188.87[.]58 - IP address - C2 endpoint

80.66.88[.]145 - IP address - C2 endpoint

/bfyxraav - URI - Possible C2 endpoint URI

/msibfyxraav - URI - Possible C2 endpoint URI

Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5) - User agent - Probable user agent leveraged

curl - User agent - Probable user agent leveraged

curl/8.0.1 - User agent - Probable user agent leveraged

Mozilla/4.0 (compatible; Synapse) - User agent - Probable user agent leveraged

Autoit3.exe - Filename - Exe file

CvUYLoTv.au3    

eDVeqcCe.au3

FeLlcFRS.au3

FTEZlGhe.au3

HOrzcEWV.au3

rKlArXHH.au3

SjadeWUz.au3

ZgOLxJQy.au3

zSrxhagw.au3

ALOXitYE.au3

DKRcfZfV.au3

gQZVKzek.au3

JZrvmJXK.au3

kLECCtMw.au3

LEXCjXKl.au3

luqWdAzF.au3

mUBNrGpv.au3

OoCdHeJT.au3

PcEJXfIl.au3

ssElzrDV.au3

TcBwRRnp.au3

TFvAUIgu.au3

xkwtvq.au3

otxynh.au3

dcthbq.au3 - Filenames - Possible exe files delivered in response to curl/8.0.1 GET requests with Target URI '/msibfyxraav

f3a0a85fe2ea4a00b3710ef4833b07a5d766702b263fda88101e0cb804d8c699 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

afa3feea5964846cd436b978faa7d31938e666288ffaa75d6ba75bfe6c12bf61 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

63aeac3b007436fa8b7ea25298362330423b80a4cb9269fd2c3e6ab1b1289208 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

ab6704e836a51555ec32d1ff009a79692fa2d11205f9b4962121bda88ba55486 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

References

1. https://www.truesec.com/hub/blog/darkgate-loader-delivered-via-teams

2. https://feedit.cz/wp-content/uploads/2023/03/YiR2022_onepager_ransomware_loaders.pdf

3. https://www.virustotal.com/gui/ip-address/5.188.87[.]58

4. https://www.forescout.com/resources/darkgate-loader-malspam-campaign/

5. https://otx.alienvault.com/indicator/ip/80.66.88[.]145

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Natalia Sánchez Rocafort
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Safeguarding Distribution Centers in the Digital Age

Default blog imageDefault blog image
12
Jun 2024

Challenges securing distribution centers

For large retail providers, e-commerce organizations, logistics & supply chain organizations, and other companies who rely on the distribution of goods to consumers cybersecurity efforts are often focused on an immense IT infrastructure. However, there's a critical, often overlooked segment of infrastructure that demands vigilant monitoring and robust protection: distribution centers.

Distribution centers play a critical role in the business operations of supply chains, logistics, and the retail industry. They serve as comprehensive logistics hubs, with many organizations operating multiple centers worldwide to meet consumer needs. Depending on their size and hours of operation, even just one hour of downtime at these centers can result in significant financial losses, ranging from tens to hundreds of thousands of dollars per hour.

Due to the time-sensitive nature and business criticality of distribution centers, there has been a rise in applying modern technologies now including AI applications to enhance efficiency within these facilities. Today’s distribution centers are increasingly connected to Enterprise IT networks, the cloud and the internet to manage every stage of the supply chain. Additionally, it is common for organizations to allow 3rd party access to the distribution center networks and data for reasons including allowing them to scale their operations effectively.

However, this influx of new technologies and interconnected systems across IT, OT and cloud introduces new risks on the cybersecurity front. Distribution center networks include industrial operational technologies ICS/OT, IoT technologies, enterprise network technology, and cloud systems working in coordination. The convergence of these technologies creates a greater chance that blind spots exist for security practitioners and this increasing presence of networked technology increases the attack surface and potential for vulnerability. Thus, having cybersecurity measures that cover IT, OT or Cloud alone is not enough to secure a complex and dynamic distribution center network infrastructure.  

The OT network encompasses various systems, devices, hardware, and software, such as:

  • Enterprise Resource Planning (ERP)
  • Warehouse Execution System (WES)
  • Warehouse Control System (WCS)
  • Warehouse Management System (WMS)
  • Energy Management Systems (EMS)
  • Building Management Systems (BMS)
  • Distribution Control Systems (DCS)
  • Enterprise IT devices
  • OT and IoT: Engineering workstations, ICS application and management servers, PLCs, HMI, access control, cameras, and printers
  • Cloud applications

Distribution centers: An expanding attack surface

As these distribution centers have become increasingly automated, connected, and technologically advanced, their attack surfaces have inherently increased. Distribution centers now have a vastly different potential for cyber risk which includes:  

  • More networked devices present
  • Increased routable connectivity within industrial systems
  • Externally exposed industrial control systems
  • Increased remote access
  • IT/OT enterprise to industrial convergence
  • Cloud connectivity
  • Contractors, vendors, and consultants on site or remoting in  

Given the variety of connected systems, distribution centers are more exposed to external threats than ever before. Simultaneously, distribution center’s business criticality has positioned them as interesting targets to cyber adversaries seeking to cause disruption with significant financial impact.

Increased connectivity requires a unified security approach

When assessing the unique distribution center attack surface, the variety of interconnected systems and devices requires a cybersecurity approach that can cover the diverse technology environment.  

From a monitoring and visibility perspective, siloed IT, OT or cloud security solutions cannot provide the comprehensive asset management, threat detection, risk management, and response and remediation capabilities across interconnected digital infrastructure that a solution natively covering IT, cloud, OT, and IoT can provide.  

The problem with using siloed cybersecurity solutions to cover a distribution center is the visibility gaps that are inherently created when using multiple solutions to try and cover the totality of the diverse infrastructure. What this means is that for cross domain and multi-stage attacks, depending on the initial access point and where the adversary plans on actioning their objectives, multiple stages of the attack may not be detected or correlated if they security solutions lack visibility into OT, IT, IoT and cloud.

Comprehensive security under one solution

Darktrace leverages Self-Learning AI, which takes a new approach to cybersecurity. Instead of relying on rules and signatures, this AI trains on the specific business to learn a ‘pattern of life’ that models normal activity for every device, user, and connection. It can be applied anywhere an organization has data, and so can natively cover IT, OT, IoT, and cloud.  

With these models, Darktrace /OT provides improved visibility, threat detection and response, and risk management for proactive hardening recommendations.  

Visibility: Darktrace is the only OT security solution that natively covers IT, IoT and OT in unison. AI augmented workflows ensure OT cybersecurity analysts and operation engineers can manage IT and OT environments, leveraging a live asset inventory and tailored dashboards to optimize security workflows and minimize operator workload.

Threat detection, investigation, and response: The AI facilitates anomaly detection capable of detecting known, unknown, and insider threats and precise response for OT environments that contains threats at their earliest stages before they can jeopardize control systems. Darktrace immediately understands, identifies, and investigates all anomalous activity in OT networks, whether human or machine driven and uses Explainable AI to generate investigation reports via Darktrace’s Cyber AI Analyst.

Proactive risk identification: Risk management capabilities like attack path modeling can prioritize remediation and mitigation that will most effectively reduce derived risk scores. Rather than relying on knowledge of past attacks and CVE lists and scores, Darktrace AI learns what is ‘normal’ for its environment, discovering previously unknown threats and risks by detecting subtle shifts in behavior and connectivity. Through the application of Darktrace AI for OT environments, security teams can investigate novel attacks, discover blind spots, get live-time visibility across all their physical and digital assets, and reduce the time to detect, respond to, and triage security events.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology

Blog

Inside the SOC

Medusa Ransomware: Looking Cyber Threats in the Eye with Darktrace

Default blog imageDefault blog image
10
Jun 2024

What is Living off the Land attack?

In the face of increasingly vigilant security teams and adept defense tools, attackers are continually looking for new ways to circumvent network security and gain access to their target environments. One common tactic is the leveraging of readily available utilities and services within a target organization’s environment in order to move through the kill chain; a popular method known as living off the land (LotL). Rather than having to leverage known malicious tools or write their own malware, attackers are able to easily exploit the existing infrastructure of their targets.

The Medusa ransomware group in particular are known to extensively employ LotL tactics, techniques and procedures (TTPs) in their attacks, as one Darktrace customer in the US discovered in early 2024.

What is Medusa Ransomware?

Medusa ransomware (not to be confused with MedusaLocker) was first observed in the wild towards the end of 2022 and has been a popular ransomware strain amongst threat actors since 2023 [1]. Medusa functions as a Ransomware-as-a-Service (RaaS) platform, providing would-be attackers, also know as affiliates, with malicious software and infrastructure required to carry out disruptive ransomware attacks. The ransomware is known to target organizations across many different industries and countries around the world, including healthcare, education, manufacturing and retail, with a particular focus on the US [2].

How does Medusa Ransomware work?

Medusa affiliates are known to employ a number of TTPs to propagate their malware, most prodominantly gaining initial access by exploiting vulnerable internet-facing assets and targeting valid local and domain accounts that are used for system administration.

The ransomware is typically delivered via phishing and spear phishing campaigns containing malicious attachments [3] [4], but it has also been observed using initial access brokers to access target networks [5]. In terms of the LotL strategies employed in Medusa compromises, affiliates are often observed leveraging legitimate services like the ConnectWise remote monitoring and management (RMM) software and PDQ Deploy, in order to evade the detection of security teams who may be unable to distinguish the activity from normal or expected network traffic [2].

According to researchers, Medusa has a public Telegram channel that is used by threat actors to post any data that may have been stolen, likely in an attempt to extort organizations and demand payment [2].  

Darktrace’s Coverage of Medusa Ransomware

Established Foothold and C2 activity

In March 2024, Darktrace /NETWORK identified over 80 devices, including an internet facing domain controller, on a customer network performing an unusual number of activities that were indicative of an emerging ransomware attack. The suspicious behavior started when devices were observed making HTTP connections to the two unusual endpoints, “wizarr.manate[.]ch” and “go-sw6-02.adventos[.]de”, with the PowerShell and JWrapperDownloader user agents.

Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the connections and was able to connect the seemingly separate events into one wider incident spanning multiple different devices. This allowed the customer to visualize the activity in chronological order and gain a better understanding of the scope of the attack.

At this point, given the nature and rarity of the observed activity, Darktrace /NETWORK's autonomous response would have been expected to take autonomous action against affected devices, blocking them from making external connections to suspicious locations. However, autonomous response was not configured to take autonomous action at the time of the attack, meaning any mitigative actions had to be manually approved by the customer’s security team.

Internal Reconnaissance

Following these extensive HTTP connections, between March 1 and 7, Darktrace detected two devices making internal connection attempts to other devices, suggesting network scanning activity. Furthermore, Darktrace identified one of the devices making a connection with the URI “/nice ports, /Trinity.txt.bak”, indicating the use of the Nmap vulnerability scanning tool. While Nmap is primarily used legitimately by security teams to perform security audits and discover vulnerabilities that require addressing, it can also be leveraged by attackers who seek to exploit this information.

Darktrace / NETWORK model alert showing the URI “/nice ports, /Trinity.txt.bak”, indicating the use of Nmap.
Figure 1: Darktrace /NETWORK model alert showing the URI “/nice ports, /Trinity.txt.bak”, indicating the use of Nmap.

Darktrace observed actors using multiple credentials, including “svc-ndscans”, which was also seen alongside DCE-RPC activity that took place on March 1. Affected devices were also observed making ExecQuery and ExecMethod requests for IWbemServices. ExecQuery is commonly utilized to execute WMI Query Language (WQL) queries that allow the retrieval of information from WI, including system information or hardware details, while ExecMethod can be used by attackers to gather detailed information about a targeted system and its running processes, as well as a tool for lateral movement.

Lateral Movement

A few hours after the first observed scanning activity on March 1, Darktrace identified a chain of administrative connections between multiple devices, including the aforementioned internet-facing server.

Cyber AI Analyst was able to connect these administrative connections and separate them into three distinct ‘hops’, i.e. the number of administrative connections made from device A to device B, including any devices leveraged in between. The AI Analyst investigation was also able to link the previously detailed scanning activity to these administrative connections, identifying that the same device was involved in both cases.

Cyber AI Analyst investigation into the chain of lateral movement activity.
Figure 2: Cyber AI Analyst investigation into the chain of lateral movement activity.

On March 7, the internet exposed server was observed transferring suspicious files over SMB to multiple internal devices. This activity was identified as unusual by Darktrace compared to the device's normal SMB activity, with an unusual number of executable (.exe) and srvsvc files transferred targeting the ADMIN$ and IPC$ shares.

Cyber AI Analyst investigation into the suspicious SMB write activity.
Figure 3: Cyber AI Analyst investigation into the suspicious SMB write activity.
Graph highlighting the number of successful SMB writes and the associated model alerts.
Figure 4: Graph highlighting the number of successful SMB writes and the associated model alerts.

The threat actor was also seen writing SQLite3*.dll files over SMB using a another credential this time. These files likely contained the malicious payload that resulted in the customer’s files being encrypted with the extension “.s3db”.

Darktrace’s visibility over an affected device performing successful SMB writes.
Figure 5: Darktrace’s visibility over an affected device performing successful SMB writes.

Encryption of Files

Finally, Darktrace observed the malicious actor beginning to encrypt and delete files on the customer’s environment. More specifically, the actor was observed using credentials previously seen on the network to encrypt files with the aforementioned “.s3db” extension.

Darktrace’s visibility over the encrypted files.
Figure 6: Darktrace’s visibility over the encrypted files.


After that, Darktrace observed the attacker encrypting  files and appending them with the extension “.MEDUSA” while also dropping a ransom note with the file name “!!!Read_me_Medusa!!!.txt”

Darktrace’s detection of threat actors deleting files with the extension “.MEDUSA”.
Figure 7: Darktrace’s detection of threat actors deleting files with the extension “.MEDUSA”.
Darktrace’s detection of the Medusa ransom note.
Figure 8: Darktrace’s detection of the Medusa ransom note.

At the same time as these events, Darktrace observed the attacker utilizing a number of LotL techniques including SSL connections to “services.pdq[.]tools”, “teamviewer[.]com” and “anydesk[.]com”. While the use of these legitimate services may have bypassed traditional security tools, Darktrace’s anomaly-based approach enabled it to detect the activity and distinguish it from ‘normal’ network activity. It is highly likely that these SSL connections represented the attacker attempting to exfiltrate sensitive data from the customer’s network, with a view to using it to extort the customer.

Cyber AI Analyst’s detection of “services.pdq[.]tools” usage.
Figure 9: Cyber AI Analyst’s detection of “services.pdq[.]tools” usage.

If this customer had been subscribed to Darktrace's Proactive Threat Notification (PTN) service at the time of the attack, they would have been promptly notified of these suspicious activities by the Darktrace Security Operation Center (SOC). In this way they could have been aware of the suspicious activities taking place in their infrastructure before the escalation of the compromise. Despite this, they were able to receive assistance through the Ask the Expert service (ATE) whereby Darktrace’s expert analyst team was on hand to assist the customer by triaging and investigating the incident further, ensuring the customer was well equipped to remediate.  

As Darktrace /NETWORK's autonomous response was not enabled in autonomous response mode, this ransomware attack was able to progress to the point of encryption and data exfiltration. Had autonomous response been properly configured to take autonomous action, Darktrace would have blocked all connections by affected devices to both internal and external endpoints, as well as enforcing a previously established “pattern of life” on the device to stop it from deviating from its expected behavior.

Conclusion

The threat actors in this Medusa ransomware attack attempted to utilize LotL techniques in order to bypass human security teams and traditional security tools. By exploiting trusted systems and tools, like Nmap and PDQ Deploy, attackers are able to carry out malicious activity under the guise of legitimate network traffic.

Darktrace’s Self-Learning AI, however, allows it to recognize the subtle deviations in a device’s behavior that tend to be indicative of compromise, regardless of whether it appears legitimate or benign on the surface.

Further to the detection of the individual events that made up this ransomware attack, Darktrace’s Cyber AI Analyst was able to correlate the activity and collate it under one wider incident. This allowed the customer to track the compromise and its attack phases from start to finish, ensuring they could obtain a holistic view of their digital environment and remediate effectively.

Credit to Maria Geronikolou, Cyber Analyst, Ryan Traill, Threat Content Lead

Appendices

Darktrace DETECT Model Detections

Anomalous Connection / SMB Enumeration

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Suspicious SMB Scanning Activity

Device / Attack and Recon Tools

Device / Suspicious File Writes to Multiple Hidden SMB Share

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Device / Internet Facing Device with High Priority Alert

Device / Network Scan

Anomalous Connection / Powershell to Rare External

Device / New PowerShell User Agent

Possible HTTP Command and Control

Extensive Suspicious DCE-RPC Activity

Possible SSL Command and Control to Multiple Endpoints

Suspicious Remote WMI Activity

Scanning of Multiple Devices

Possible Ransom Note Accessed over SMB

List of Indicators of Compromise (IoCs)

IoC – Type – Description + Confidence

207.188.6[.]17      -     IP address   -      C2 Endpoint

172.64.154[.]227 - IP address -        C2 Endpoint

wizarr.manate[.]ch  - Hostname -       C2 Endpoint

go-sw6-02.adventos[.]de.  Hostname  - C2 Endpoint

.MEDUSA             -        File extension     - Extension to encrypted files

.s3db               -             File extension    -  Created file extension

SQLite3-64.dll    -        File           -               Used tool

!!!Read_me_Medusa!!!.txt - File -   Ransom note

Svc-ndscans         -         Credential     -     Possible compromised credential

Svc-NinjaRMM      -       Credential      -     Possible compromised credential

MITRE ATT&CK Mapping

Discovery  - File and Directory Discovery - T1083

Reconnaissance    -  Scanning IP            -          T1595.001

Reconnaissance -  Vulnerability Scanning -  T1595.002

Lateral Movement -Exploitation of Remote Service -  T1210

Lateral Movement - Exploitation of Remote Service -   T1210

Lateral Movement  -  SMB/Windows Admin Shares     -    T1021.002

Lateral Movement   -  Taint Shared Content          -            T1080

Execution   - PowerShell     - T1059.001

Execution  -   Service Execution   -    T1059.002

Impact   -    Data Encrypted for Impact  -  T1486

References

[1] https://unit42.paloaltonetworks.com/medusa-ransomware-escalation-new-leak-site/

[2] https://thehackernews.com/2024/01/medusa-ransomware-on-rise-from-data.html

[3] https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/unveiling-the-latest-ransomware-threats-targeting-the-casino-and-entertainment-industry/

[4] https://www.sangfor.com/farsight-labs-threat-intelligence/cybersecurity/security-advisory-for-medusa-ransomware

[5] https://thehackernews.com/2024/01/medusa-ransomware-on-rise-from-data.html

[6]https://any.run/report/8be3304fec9d41d44012213ddbb28980d2570edeef3523b909af2f97768a8d85/e4c54c9d-12fd-477f-8cbb-a20f8fb98912

Continue reading
About the author
Maria Geronikolou
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.