Blog

Inside the SOC

Enemies on Our Teams: Darktrace Stops DarkGate Malware through Microsoft Teams

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Dec 2023
15
Dec 2023
This blog discusses how Darktrace was able to detect and respond to malicious attempts to use Microsoft Teams and Sharepoint to deliver the DarkGate malware onto a customer network in September 2023.

Securing Microsoft Teams and SharePoint

Given the prevalence of the Microsoft Teams and Microsoft SharePoint platforms in the workplace in recent years, it is essential that organizations stay vigilant to the threat posed by applications vital to hybrid and remote work and prioritize the security and cyber hygiene of these services. For just as the use of these platforms has increased exponentially with the rise of remote and hybrid working, so too has the malicious use of them to deliver malware to unassuming users.

Researchers across the threat landscape have begun to observe these legitimate services being leveraged by malicious actors as an initial access method. Microsoft Teams can easily be exploited to send targeted phishing messages to individuals within an organization, while appearing legitimate and safe. Although the exact contents of these messages may vary, the messages frequently use social engineering techniques to lure users to click on a SharePoint link embedded into the message. Interacting with the malicious link will then download a payload [1].

Darktrace observed one such malicious attempt to use Microsoft Teams and SharePoint in September 2023, when a device was observed downloading DarkGate, a commercial trojan that is known to deploy other strains of malware, also referred to as a commodity loader [2], after clicking on SharePoint link. Fortunately for the customer, Darktrace’s suite of products was perfectly poised to identify the initial signs of suspicious activity and Darktrace RESPOND™ was able to immediately halt the advancement of the attack.

DarkGate Attack Overview

On September 8, 2023, Darktrace DETECT™ observed around 30 internal devices on a customer network making unusual SSL connections to an external SharePoint site which contained the name of a person, 'XXXXXXXX-my.sharepoint[.]com' (107.136[.]8, 13.107.138[.]8). The organization did not have any employees who went by this name and prior to this activity, no internal devices had been seen contacting the endpoint.

At first glance, this initial attack vector would have appeared subtle and seemingly trustworthy to users. Malicious actors likely sent various users a phishing message via Microsoft Teams that contained the spoofed SharePoint link to the personalized SharePoint link ''XXXXXXXX-my.sharepoint[.]com'.

Figure 1: Advanced Search query showing a sudden spike in connections to ''XXXXXXXX -my.sharepoint[.]com'.

Darktrace observed around 10 devices downloading approximately 1 MB of data during their connections to the Sharepoint endpoint. Darktrace DETECT observed some of the devices making subsequent HTTP GET requests to a range of anomalous URIs. The devices utilized multiple user-agents for these connections, including ‘curl’, a command line tool that allows individuals to request and transfer data from a specific URL. The connections were made to the IP 5.188.87[.]58, an endpoint that has been flagged as an indicator of compromise (IoC) for DarkGate malware by multiple open-source intelligence (OSINT) sources [3], commonly associated with HTTP GET requests:

  1. GET request over port 2351 with the User-Agent header 'Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5)' and the target URI '/bfyxraav' to 5.188.87[.]58
  2. GET request over port 2351 with the user-agent header 'curl' and the target URI '/' to 5.188.87[.]58
  3. GET request over port 2351 with the user-agent header 'curl/8.0.1' and the target URI '/msibfyxraav' to 5.188.87[.]58

The HTTP GET requests made with the user-agent header 'curl' and the target URI '/' to 5.188.87[.]58 were responded to with a filename called 'Autoit3.exe'. The other requests received script files with names ending in '.au3, such as 'xkwtvq.au3', 'otxynh.au3', and 'dcthbq.au3'. DarkGate malware has been known to make use of legitimate AutoIt files, and typically runs multiple AutoIt scripts (‘.au3’) [4].

Following these unusual file downloads, the devices proceeded to make hundreds of HTTP POST requests to the target URI '/' using the user-agent header 'Mozilla/4.0 (compatible; Synapse)' to 5.188.87[.]58. The contents of these requests, along with the contents of the responses, appear to be heavily obfuscated.

Figure 2: Example of obfuscated response, as shown in a packet capture downloaded from Darktrace.

While Microsoft’s Safe Attachments and Safe Links settings were unable to detect this camouflaged malicious activity, Darktrace DETECT observed the unusual over-the-network connectivity that occurred. While Darktrace DETECT identified multiple internal devices engaging in this anomalous behavior throughout the course of the compromise, the activity observed on one device in particular best showcases the overall kill chain of this attack.

The device in question was observed using two different user agents (curl/8.0.1 and Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5)) when connecting to the endpoint 5.188.87[.]58 and target URI ‘/bfyxraav’. Additionally, Darktrace DETECT recognized that it was unusual for this device to be making these HTTP connections via destination port 2351.

As a result, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the suspicious activity and was able to connect the unusual external connections together, viewing them as one beaconing incident as opposed to isolated series of connections.

Figure 3: Cyber AI Analyst investigation summarizing the unusual repeated connections made to 5.188.87[.]58 via destination port 2351.

Darktrace then observed the device downloading the ‘Autoit3.exe’ file. Darktrace RESPOND took swift mitigative action by blocking similar connections to this endpoint, preventing the device from downloading any additional suspicious files.

Figure 4: Suspicious ‘Autoit3.exe’ downloaded by the source device from the malicious external endpoint.

Just one millisecond later, Darktrace observed the device making suspicious HTTP GET requests to URIs including ‘/msibfyxraav’. Darktrace recognized that the device had carried out several suspicious actions within a relatively short period of time, breaching multiple DETECT models, indicating that it may have been compromised. As a result, RESPOND took action against the offending device by preventing it from communicating externally [blocking all outbound connections] for a period of one hour, allowing the customer’s security team precious time to address the issue.

It should be noted that, at this point, had the customer subscribed to Darktrace’s Proactive Threat Notification (PTN) service, the Darktrace Security Operations Center (SOC) would have investigated these incidents in greater detail, and likely would have sent a notification directly to the customer to inform them of the suspicious activity.

Additionally, AI Analyst collated various distinct events and suggested that these stages were linked as part of an attack. This type of augmented understanding of events calculated at machine speed is extremely valuable since it likely would have taken a human analyst hours to link all the facets of the incident together.  

Figure 5: AI Analyst investigation showcasing the use of the ‘curl’ user agent to connect to the target URI ‘/msibfyxraav’.
Figure 6: Darktrace RESPOND moved to mitigate any following connections by blocking all outgoing traffic for 1 hour.

Following this, an automated investigation was launched by Microsoft Defender for Endpoint. Darktrace is designed to coordinate with multiple third-party security tools, allowing for information on ongoing incidents to be seamlessly exchanged between Darktrace and other security tools. In this instance, Microsoft Defender identified a ‘low severity’ incident on the device, this automatically triggered a corresponding alert within DETECT, presented on the Darktrace Threat Visuallizer.

The described activity occurred within milliseconds. At each step of the attack, Darktrace RESPOND took action either by enforcing expected patterns of life [normality] on the affected device, blocking connections to suspicious endpoints for a specified amount of time, and/or blocking all outgoing traffic from the device. All the relevant activity was detected and promptly stopped for this device, and other compromised devices, thus containing the compromise and providing the security team invaluable remediation time.

Figure 7: Overview of the compromise activity, all of which took place within a matter of miliseconds.

Darktrace identified similar activity on other devices in this customer’s network, as well as across Darktrace’s fleet around the same time in early September.

On a different customer environment, Darktrace DETECT observed more than 25 ‘.au3’ files being downloaded; this activity can be seen in Figure 9.

Figure 8: High volume of file downloads following GET request and 'curl' commands.

Figure 9 provides more details of this activity, including the source and destination IP addresses (5.188.87[.]58), the destination port, the HTTP method used and the MIME/content-type of the file

Figure 9: Additional information of the anomalous connections.

A compromised server in another customer deployment was seen establishing unusual connections to the external IP address 80.66.88[.]145 – an endpoint that has been associated with DarkGate by OSINT sources [5]. This activity was identified by Darktrace/DETECT as a new connection for the device via an unusual destination port, 2840. As the device in question was a critical server, Darktrace DETECT treated it with suspicion and generated an ‘Anomalous External Activity from Critical Network Device’ model breach.  

Figure 10: Model breach and model breach event log for suspicious connections to additional endpoint.

Conclusion

While Microsoft Teams and SharePoint are extremely prominent tools that are essential to the business operations of many organizations, they can also be used to compromise via living off the land, even at initial intrusion. Any Microsoft Teams user within a corporate setting could be targeted by a malicious actor, as such SharePoint links from unknown senders should always be treated with caution and should not automatically be considered as secure or legitimate, even when operating within legitimate Microsoft infrastructure.

Malicious actors can leverage these commonly used platforms as a means to carry out their cyber-attacks, therefore organizations must take appropriate measures to protect and secure their digital environments. As demonstrated here, threat actors can attempt to deploy malware, like DarkGate, by targeting users with spoofed Microsoft Teams messages. By masking malicious links as legitimate SharePoint links, these attempts can easily convince targets and bypass traditional security tools and even Microsoft’s own Safe Links and Safe Attachments security capabilities.

When the chain of events of an attack escalates within milliseconds, organizations must rely on AI-driven tools that can quickly identify and automatically respond to suspicious events without latency. As such, the value of Darktrace DETECT and Darktrace RESPOND cannot be overstated. Given the efficacy and efficiency of Darktrace’s detection and autonomous response capabilities, a more severe network compromise in the form of the DarkGate commodity loader was ultimately averted.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Zoe Tilsiter.

Appendices

Darktrace DETECT Model Detections

  • [Model Breach: Device / Initial Breach Chain Compromise 100% –– Breach URI: /#modelbreach/114039 ] (Enhanced Monitoring)·      [Model Breach: Device / Initial Breach Chain Compromise 100% –– Breach URI: /#modelbreach/114124 ] (Enhanced Monitoring)
  • [Model Breach: Device / New User Agent and New IP 62% –– Breach URI: /#modelbreach/114030 ]
  • [Model Breach: Anomalous Connection / Application Protocol on Uncommon Port 46% –– Breach URI: /#modelbreach/114031 ]
  • [Model Breach: Anomalous Connection / New User Agent to IP Without Hostname 62% –– Breach URI: /#modelbreach/114032 ]
  • [Model Breach: Device / New User Agent 32% –– Breach URI: /#modelbreach/114035 ]
  • [Model Breach: Device / Three Or More New User Agents 31% –– Breach URI: /#modelbreach/114036 ]
  • [Model Breach: Anomalous Server Activity / Anomalous External Activity from Critical Network Device 62% –– Breach URI: /#modelbreach/612173 ]
  • [Model Breach: Anomalous File / EXE from Rare External Location 61% –– Breach URI: /#modelbreach/114037 ]
  • [Model Breach: Anomalous Connection / Multiple Connections to New External TCP Port 61% –– Breach URI: /#modelbreach/114042 ]
  • [Model Breach: Security Integration / Integration Ransomware Detected 100% –– Breach URI: /#modelbreach/114049 ]
  • [Model Breach: Compromise / Beaconing Activity To External Rare 62% –– Breach URI: /#modelbreach/114059 ]
  • [Model Breach: Compromise / HTTP Beaconing to New Endpoint 30% –– Breach URI: /#modelbreach/114067 ]
  • [Model Breach: Security Integration / C2 Activity and Integration Detection 100% –– Breach URI: /#modelbreach/114069 ]
  • [Model Breach: Anomalous File / EXE from Rare External Location 55% –– Breach URI: /#modelbreach/114077 ]
  • [Model Breach: Compromise / High Volume of Connections with Beacon Score 66% –– Breach URI: /#modelbreach/114260 ]
  • [Model Breach: Security Integration / Low Severity Integration Detection 59% –– Breach URI: /#modelbreach/114293 ]
  • [Model Breach: Security Integration / Low Severity Integration Detection 33% –– Breach URI: /#modelbreach/114462 ]
  • [Model Breach: Security Integration / Integration Ransomware Detected 100% –– Breach URI: /#modelbreach/114109 ]·      [Model Breach: Device / Three Or More New User Agents 31% –– Breach URI: /#modelbreach/114118 ]·      [Model Breach: Anomalous Connection / Application Protocol on Uncommon Port 46% –– Breach URI: /#modelbreach/114113 ] ·      [Model Breach: Anomalous Connection / New User Agent to IP Without Hostname 62% –– Breach URI: /#modelbreach/114114 ]·      [Model Breach: Device / New User Agent 32% –– Breach URI: /#modelbreach/114117 ]·      [Model Breach: Anomalous File / EXE from Rare External Location 61% –– Breach URI: /#modelbreach/114122 ]·      [Model Breach: Security Integration / Low Severity Integration Detection 54% –– Breach URI: /#modelbreach/114310 ]
  • [Model Breach: Security Integration / Integration Ransomware Detected 65% –– Breach URI: /#modelbreach/114662 ]Darktrace/Respond Model Breaches
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious File Block 61% –– Breach URI: /#modelbreach/114033 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena File then New Outbound Block 100% –– Breach URI: /#modelbreach/114038 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block 100% –– Breach URI: /#modelbreach/114040 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block 87% –– Breach URI: /#modelbreach/114041 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach 87% –– Breach URI: /#modelbreach/114043 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Ransomware Block 100% –– Breach URI: /#modelbreach/114052 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Significant Security Integration and Network Activity Block 87% –– Breach URI: /#modelbreach/114070 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Breaches Over Time Block 87% –– Breach URI: /#modelbreach/114071 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious Activity Block 87% –– Breach URI: /#modelbreach/114072 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious File Block 53% –– Breach URI: /#modelbreach/114079 ]
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Breaches Over Time Block 64% –– Breach URI: /#modelbreach/114539 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Ransomware Block 66% –– Breach URI: /#modelbreach/114667 ]
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious Activity Block 79% –– Breach URI: /#modelbreach/114684 ]·      
  • [Model Breach: Antigena / Network::External Threat::Antigena Ransomware Block 100% –– Breach URI: /#modelbreach/114110 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block 87% –– Breach URI: /#modelbreach/114111 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach 87% –– Breach URI: /#modelbreach/114115 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Breaches Over Time Block 87% –– Breach URI: /#modelbreach/114116 ]·      
  • [Model Breach: Antigena / Network::External Threat::Antigena Suspicious File Block 61% –– Breach URI: /#modelbreach/114121 ]·      
  • [Model Breach: Antigena / Network::External Threat::Antigena File then New Outbound Block 100% –– Breach URI: /#modelbreach/114123 ]·      
  • [Model Breach: Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block 100% –– Breach URI: /#modelbreach/114125 ]

List of IoCs

IoC - Type - Description + Confidence

5.188.87[.]58 - IP address - C2 endpoint

80.66.88[.]145 - IP address - C2 endpoint

/bfyxraav - URI - Possible C2 endpoint URI

/msibfyxraav - URI - Possible C2 endpoint URI

Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5) - User agent - Probable user agent leveraged

curl - User agent - Probable user agent leveraged

curl/8.0.1 - User agent - Probable user agent leveraged

Mozilla/4.0 (compatible; Synapse) - User agent - Probable user agent leveraged

Autoit3.exe - Filename - Exe file

CvUYLoTv.au3    

eDVeqcCe.au3

FeLlcFRS.au3

FTEZlGhe.au3

HOrzcEWV.au3

rKlArXHH.au3

SjadeWUz.au3

ZgOLxJQy.au3

zSrxhagw.au3

ALOXitYE.au3

DKRcfZfV.au3

gQZVKzek.au3

JZrvmJXK.au3

kLECCtMw.au3

LEXCjXKl.au3

luqWdAzF.au3

mUBNrGpv.au3

OoCdHeJT.au3

PcEJXfIl.au3

ssElzrDV.au3

TcBwRRnp.au3

TFvAUIgu.au3

xkwtvq.au3

otxynh.au3

dcthbq.au3 - Filenames - Possible exe files delivered in response to curl/8.0.1 GET requests with Target URI '/msibfyxraav

f3a0a85fe2ea4a00b3710ef4833b07a5d766702b263fda88101e0cb804d8c699 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

afa3feea5964846cd436b978faa7d31938e666288ffaa75d6ba75bfe6c12bf61 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

63aeac3b007436fa8b7ea25298362330423b80a4cb9269fd2c3e6ab1b1289208 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

ab6704e836a51555ec32d1ff009a79692fa2d11205f9b4962121bda88ba55486 - SHA256 file hash - Possible SHA256 hashes of 'Autoit3.exe' files

References

1. https://www.truesec.com/hub/blog/darkgate-loader-delivered-via-teams

2. https://feedit.cz/wp-content/uploads/2023/03/YiR2022_onepager_ransomware_loaders.pdf

3. https://www.virustotal.com/gui/ip-address/5.188.87[.]58

4. https://www.forescout.com/resources/darkgate-loader-malspam-campaign/

5. https://otx.alienvault.com/indicator/ip/80.66.88[.]145

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Natalia Sánchez Rocafort
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

Post-Exploitation Activities on PAN-OS Devices: A Network-Based Analysis

Default blog imageDefault blog image
20
Jun 2024

Introduction

Perimeter devices such as firewalls, virtual private networks (VPNs), and intrusion prevention systems (IPS), have long been the target of adversarial actors attempting to gain access to internal networks. However, recent publications and public service announcements by leading public institutions underscore the increased emphasis threat actors are putting on leveraging such products to initiate compromises.

A blog post by the UK National Cyber Security Center (NCSC) released in early 2024 notes that as improvements are made in the detection of phishing email payloads, threat actors have again begun re-focusing efforts to exploiting network edge devices, many of which are not secure by design, as a means of breach initiation.[i] As such, it comes as no surprise that new Common Vulnerabilities and Exposures (CVEs) are constantly discovered that exploit such internet-exposed systems.

Darktrace analysts frequently observe the impacts of such CVEs first through their investigations via Darktrace’s Security Operations Center (SOC), sometimes even before the public disclosure of proof of concepts for such exploits.  Beginning April 2024, Darktrace’s SOC began handling alerts and customer requests for potential incidents involving Palo Alto Networks firewall devices.  It was during this time that external researchers publicly disclosed what would later be classified as PAN-OS CVE-2024-3400, a form of remote command execution vulnerability that affects several versions of Palo Alto Networks’ firewall operating System (PAN-OS), namely PAN-OS 11.1, 11.0 and 10.2.

The increase in observed SOC activity for Palo Alto firewall devices, coupled with the public announcement of the new CVE, prompted Darktrace researchers to look for evidence of PAN-OS exploitation on customer networks. Researchers also focused on documenting post-exploitation activity from threat actors leveraging the recently disclosed vulnerability.

As such, this blog highlights the network-based behaviors involved in the CVE-2024-3400 attack chains investigated by Darktrace’s SOC and Threat Research teams. Moreover, this investigation also provides a deeper insight into the post-compromise activities of threat actors leveraging the novel CVE.  Such insights will not only prove relevant for cybersecurity teams looking to inhibit compromises in this specific instance, but also highlights general patterns of behavior by threat actors utilizing such CVEs to target internet-facing systems.

CVE-2024-3400

In April 2024, the Darktrace SOC observed an uptick in activity involving recurring patterns of malicious activity from Palo Alto firewall appliances. In response to this trend, Darktrace initiated a Threat Research investigation into such activity to try and identify common factors and indicators across seemingly parallel events. As the Threat Research team opened their investigation, external researchers concurrently provided public details of CVE-2024-3400, a form of remote command execution vulnerability in the GlobalProtect feature on Palo Alto Network firewall devices running PAN-OS versions: 10.2, 11.0, and 11.1.[ii]

In their proof of concept, security researchers at watchTowr demonstrated how an attacker can pass session ID (SESSID) values to these PAN-OS devices to request files that do not exist. In response, the system creates a zero-byte file with root privileges with the same name.[iii] Log data is passed on devices running telemetry services to external servers through command line functionality.[iv] Given this functionality, external actors could then request non-existent files in the SESSID containing command parameters which then be interpreted by the command line functionality.[v] Although researchers first believed the exploit could only be used against devices running telemetry services, this was later discovered to be untrue.[vi]

As details of CVE-2024-3400 began to surface, Darktrace’s Threat Research analysts quickly identified distinct overlaps in the observed activity on specific customer deployments and the post-exploitation behavior reported by external researchers. Given the parallels, Darktrace correlated the patterns of activity observed by the SOC team to exploitation of the newly discovered vulnerability in PAN-OS firewall appliances.

Campaign Analysis

Between the April and May 2024, Darktrace identified four main themes of post-exploitation activity involving Palo Alto Network firewall devices likely targeted via CVE-2024-3400: exploitation validation, shell command and tool retrieval, configuration data exfiltration, and ongoing command and control through encrypted channels and application protocols.

1. Exploit Validation and Further Vulnerability Enumeration

Many of the investigated attack chains began with malicious actors using out-of-band application security testing (OAST) services such as Interactsh to validate exploits against Palo Alto firewall appliances. This exploit validation activity typically resulted in devices attempting to contact unusual external endpoints (namely, subdomains of ‘oast[.]pro’, ‘oast[.]live’, ‘oast[.]site’, ‘oast[.]online’, ‘oast[.]fun’, ‘oast[.]me’, and ‘g3n[.]in’) associated with OAST services such as Interactsh. These services can be used by developers to inspect and debug internet traffic, but also have been easily abused by threat actors.

While attempted connections to OAST services do not alone indicate CVE-2024-3400 exploitation, the prevalence of such activities in observed Palo Alto firewall attack chains suggests widespread usage of these OAST services to validate initial access methods and possibly further enumerate systems for additional vulnerabilities.

Figure 1: Model alert log details showcasing a PAN-OS device making DNS queries for Interactsh domain names in what could be exploit validation, and/or further host enumeration.

2. Command and Payload Transmission

The most common feature across analyzed incidents was HTTP GET requests for shell scripts and Linux executable files (ELF) from external IPs associated with exploitation of the CVE. These HTTP requests were frequently initiated using the utilities, cURL and wget. On nearly every device likely targeted by threat actors leveraging the CVE, Darktrace analysts highlighted the retrieval of shell scripts that either featured enumeration commands, the removal of evidence of compromise activity, or commands to retrieve and start binaries on the destination device.

a) Shell Script Retrieval

Investigated devices commonly performed HTTP GET requests to retrieve shell command scripts. Despite this commonality, there was some degree of variety amongst the retrieved payloads and their affiliation with certain command tools. Several distinct types of shell commands and files were identified during the analyzed breaches. For example, some firewall devices were seen requesting .txt files associated with both Sliver C2, whose malicious use has previously been investigated by Darktrace, and Cobalt Strike. The target URIs of devices’ HTTP requests for these files included, “36shr.txt”, “2.txt”, “bin.txt”, and “data.txt”.

More interestingly, though, was the frequency with which analyzed systems requested bash scripts from rare external IP addresses, sometimes over non-standard ports for the HTTP protocol. These bash scripts would feature commands usually for the recipient system to check for certain existing files and or running processes. If the file did not exist, the system would then use cURL or wget to obtain content from external sites, change the permissions of the file, and then execute, sending output to dev/null as a means of likely defense evasion. In some scripts, the system would first make a new folder, and change directories prior to acquiring external content. Additionally, some samples highlighted multiple attempts at enumeration of the host system.

Figure 2: Packet capture (PCAP) data highlighting the incoming shell scripts providing instructions to use cURL to obtain external content, change the permissions of the file to execute, and then run the binary using the credentials and details provided.
Figure 3: PCAP data highlighting a variation of a shell script seen in an HTTP response processed by compromised devices. The script provides instructions to make a directory, retrieve and execute external content, and to hide the output.

Not every retrieved file that was not explicitly a binary featured bash scripts. Model alerts on some deployments also included file masquerading attempts by threat actors, whereby the Palo Alto firewall device would request content with a misleading extension in the URI. In one such instance, the requested URI, and HTTP response header suggests the returned content is an image/png, but the actual body response featured configuration parameters for a new daemon service to be run on the system.

Figure 4: PCAP data indicating configuration details likely for a new daemon on an investigated host. Such HTTP body content differs from the image/png extension within the request URI and declared content type in the HTTP response header.

Bash scripts analyzed across customer deployments also mirrored those identified by external security teams. External researchers previously reported on a series of identifiable shell commands in some cases of CVE-2024-3400 exploitation analyzed by their teams. Commands frequently involved a persistence mechanism they later labeled as the “UPSTYLE” backdoor.[vii]  This python-based program operates by reading commands hidden in error logs generated by 404 requests to the compromised server. The backdoor interprets the requests and writes the output to CSS files on the device. In many cases, Darktrace’s Threat Research team noted clear parallels between shell commands retrieved via HTTP GET request with those directly involving UPSTYLE. There were also matches with some URI patterns identified with the backdoor and requests observed on Darktrace deployments.

Figure 5: HTTP response data containing shell commands potentially relating to the UPSTYLE backdoor.

The presence of these UPSTYLE-related shell commands in response to Palo Alto firewall devices’ HTTP requests provides further evidence for initial exploitation of the CVE. Many bash scripts in examined cases interacted with folders and files likely related to CVE-2024-3400 exploitation. These scripts frequently sought to delete contents of certain folders, such as “/opt/panlogs/tmp/device_telemetry/minute/*” where evidence of exploitation would likely reside. Moreover, recursive removal and copy commands were frequently seen targeting CSS files within the GlobalProtect folder, already noted as the vulnerable element within PAN-OS versions. This evidence is further corroborated by host-based forensic analysis conducted by external researchers.[viii]

Figure 6: PCAP data from investigated system indicating likely defense evasion by removing content on folders where CVE exploitation occurred.

b) Executable File Retrieval

Typically, following command processing, compromised Palo Alto firewall devices proceeded to make web requests for several unusual and potentially malicious files. Many such executables would be retrieved via processed scripts. While there a fair amount of variety in specific executables and binaries obtained, overall, these executables involved either further command tooling such as Sliver C2 or Cobalt Strike payloads, or unknown executables. Affected systems would also employ uncommon ports for HTTP connections, in a likely attempt to evade detection. Extensions featured within the URI, when visible, frequently noted ‘.elf’ (Linux executable) or ‘.exe’ payloads. While most derived hashes did not feature identifiable open-source intelligence (OSINT) details, some samples did have external information tying the sample to specific malware. For example, one such investigation featured a compromised system requesting a file with a hash identified as the Spark malware (backdoor) while another investigated case included a host requesting a known crypto-miner.

Figure 7: PCAP data highlighting compromised system retrieving ELF content from a rare external server running a simple Python HTTP server.
Figure 8: Darktrace model alert logs highlighting a device labeled “Palo Alto” making a HTTP request on an uncommon port for an executable file following likely CVE exploitation.

3. Configuration Data Exfiltration and Unusual HTTP POST Activity

During Darktrace’s investigations, there were also several instances of sensitive data exfiltration from PAN-OS firewall devices. Specifically, targeted systems were observed making HTTP POST requests via destination port 80 to rare external endpoints that OSINT sources associate with CVE-2024-3400 exploitation and activity. PCAP analysis of such HTTP requests revealed that they often contained sensitive configuration details of the targeted Palo Alto firewall devices, including the IP address, default gateway, domain, users, superusers, and password hashes, to name only a few. Threat actors frequently utilized Target URIs such as “/upload” in their HTTP POST requests of this multi-part boundary form data. Again, the User-Agent headers of these HTTP requests largely involved versions of cURL, typically 7.6.1, and wget.

Figure 9: PCAP datahighlighting Palo Alto Firewall device running vulnerable version of PAN-OSposting configuration details to rare external services via HTTP.
Figure 10: Model alert logs highlighting a Palo Alto firewall device performing HTTP POSTs to a rare external IP, without a prior hostname lookup, on an uncommon port using a URI associated with configuration data exfiltration across analyzed incidents
Figure 11: Examples of TargetURIs of HTTP POST requests involving base64 encoded IPs and potential dataegress.

4. Ongoing C2 and Miscellaneous Activity

Lastly, a smaller number of affected Palo Alto firewall devices were seen engaging in repeated beaconing and/or C2 communication via both encrypted and unencrypted protocols during and following the initial series of kill chain events. Such encrypted channels typically involved protocols such as TLS/SSL and SSH. This activity likely represented ongoing communication of targeted systems with attacker infrastructure. Model alerts typically highlighted unusual levels of repeated external connectivity to rare external IP addresses over varying lengths of time. In some investigated incidents, beaconing activity consisted of hundreds of thousands of connections over several days.

Figure 12:  Advanced search details highlighting high levels of ongoing external communication to endpoints associated with C2 infrastructure exploiting CVE-2024-3400.

Some beaconing activity appears to have involved the use of the WebSocket protocol, as indicated by the appearance of “/ws” URIs and validated within packet captures. Such connections were then upgraded to an encrypted connection.

Figure 13:  PCAP highlighting use of WebSocket protocol to engage in ongoing external connectivity to likely C2 infrastructure following CVE-2024-3400 compromise.

While not directly visible in all the deployments, some investigations also yielded evidence of attempts at further post-exploitation activity. For example, a handful of the analyzed binaries that were downloaded by examined devices had OSINT information suggesting a relation to crypto-mining malware strains. However, crypto-mining activity was not directly observed at this time. Furthermore, several devices also triggered model alerts relating to brute-forcing activity via several authentication protocols (namely, Keberos and RADIUS) during the time of compromise. This brute-force activity likely represented attempts to move laterally from the affected firewall system to deeper parts of the network.

Figure 14: Model alert logs noting repeated SSL connectivity to a Sliver C2-affiliated endpoint in what likely constitutes C2 connectivity.
Figure 15: Model alert logs featuring repeated RADIUS login failures from a compromised PAN-OS device using generic usernames, suggesting brute-force activity.

Conclusion

Between April and late May 2024, Darktrace’s SOC and Threat Research teams identified several instances of likely PAN-OS CVE-2024-3400 exploitation across the Darktrace customer base. The subsequent investigation yielded four major themes that categorize the observed network-based post-exploitation activity. These major themes were exploit validation activity, retrieval of binaries and shell scripts, data exfiltration via HTTP POST activity, and ongoing C2 communication with rare external endpoints. The insights shared in this article will hopefully contribute to the ongoing discussion within the cybersecurity community about how to handle the likely continued exploitation of this vulnerability. Moreover, this article may also help cybersecurity professionals better respond to future exploitation of not only Palo Alto PAN-OS firewall devices, but also of edge devices more broadly.

Threat actors will continue to discover and leverage new CVEs impacting edge infrastructure. Since it is not yet known which CVEs threat actors will exploit next, relying on rules and signatures for the detection of exploitation of such CVEs is not a viable approach. Darktrace’s anomaly-based approach to threat detection, however, is well positioned to robustly adapt to threat actors’ changing methods, since although threat actors can change the CVEs they exploit, they cannot change the fact that their exploitation of CVEs results in highly unusual patterns of activity.

Credit to Adam Potter, Cyber Analyst, Sam Lister, Senior Cyber Analyst

Appendices

Indicators of Compromise

Indicator – Type – Description

94.131.120[.]80              IP             C2 Endpoint

94.131.120[.]80:53/?src=[REDACTED]=hour=root                  URL        C2/Exfiltration Endpoint

134.213.29[.]14/?src=[REDACTED]min=root             URL        C2/Exfiltration Endpoint

134.213.29[.]14/grep[.]mips64            URL        Payload

134.213.29[.]14/grep[.]x86_64             URL        Payload

134.213.29[.]14/?deer               URL        Payload

134.213.29[.]14/?host=IDS   URL        Payload

134.213.29[.]14/ldr[.]sh           URL        Payload

91ebcea4e6d34fd6e22f99713eaf67571b51ab01  SHA1 File Hash               Payload

185.243.115[.]250/snmpd2[.]elf        URL        Payload

23.163.0[.]111/com   URL        Payload

80.92.205[.]239/upload            URL        C2/Exfiltration Endpoint

194.36.171[.]43/upload            URL        C2/Exfiltration Endpoint

update.gl-protect[.]com          Hostname         C2 Endpoint

update.gl-protect[.]com:63869/snmpgp      URL        Payload

146.70.87[.]237              IP address         C2 Endpoint

146.70.87[.]237:63867/snmpdd         URL        Payload

393c41b3ceab4beecf365285e8bdf0546f41efad   SHA1 File Hash               Payload

138.68.44[.]59/app/r URL        Payload

138.68.44[.]59/app/clientr     URL        Payload

138.68.44[.]59/manage            URL        Payload

72.5.43[.]90/patch      URL        Payload

217.69.3[.]218                 IP             C2 Endpoint

5e8387c24b75c778c920f8aa38e4d3882cc6d306                  SHA1 File Hash               Payload

217.69.3[.]218/snmpd[.]elf   URL        Payload

958f13da6ccf98fcaa270a6e24f83b1a4832938a    SHA1 File Hash               Payload

6708dc41b15b892279af2947f143af95fb9efe6e     SHA1 File Hash               Payload

dc50c0de7f24baf03d4f4c6fdf6c366d2fcfbe6c       SHA1 File Hash               Payload

109.120.178[.]253:10000/data[.]txt                  URL        Payload

109.120.178[.]253:10000/bin[.]txt   URL        Payload

bc9dc2e42654e2179210d98f77822723740a5ba6                 SHA1 File Hash               Payload

109.120.178[.]253:10000/123              URL        Payload

65283921da4e8b5eabb926e60ca9ad3d087e67fa                 SHA1 File Hash               Payload

img.dxyjg[.]com/6hiryXjZN0Mx[.]sh                  URL        Payload

149.56.18[.]189/IC4nzNvf7w/2[.]txt                 URL        Payload

228d05fd92ec4d19659d71693198564ae6f6b117 SHA1 File Hash               Payload

54b892b8fdab7c07e1e123340d800e7ed0386600                 SHA1 File Hash               Payload

165.232.121[.]217/rules          URL        Payload

165.232.121[.]217/app/request          URL        Payload

938faec77ebdac758587bba999e470785253edaf SHA1 File Hash               Payload

165.232.121[.]217/app/request63   URL        Payload

165.232.121[.]217:4443/termite/165.232.121[.]217             URL        Payload

92.118.112[.]60/snmpd2[.]elf               URL        Payload

2a90d481a7134d66e8b7886cdfe98d9c1264a386                 SHA1 File Hash               Payload

92.118.112[.]60/36shr[.]txt   URL        Payload

d6a33673cedb12811dde03a705e1302464d8227f                 SHA1 File Hash               Payload

c712712a563fe09fa525dfc01ce13564e3d98d67  SHA1 File Hash               Payload

091b3b33e0d1b55852167c3069afcdb0af5e5e79 SHA1 File Hash               Payload

5eebf7518325e6d3a0fd7da2c53e7d229d7b74b6                  SHA1 File Hash               Payload

183be7a0c958f5ed4816c781a2d7d5aa8a0bca9f SHA1 File Hash               Payload

e7d2f1224546b17d805617d02ade91a9a20e783e                 SHA1 File Hash               Payload

e6137a15df66054e4c97e1f4b8181798985b480d SHA1 File Hash               Payload

95.164.7[.]33:53/sea[.]png    URL        Payload

95.164.7[.]33/rules     URL        Payload

95.164.7[.]33:53/lb64                URL        Payload

c2bc9a7657bea17792048902ccf2d77a2f50d2d7 SHA1 File Hash               Payload

923369bbb86b9a9ccf42ba6f0d022b1cd4f33e9d SHA1 File Hash               Payload

52972a971a05b842c6b90c581b5c697f740cb5b9                 SHA1 File Hash               Payload

95d45b455cf62186c272c03d6253fef65227f63a    SHA1 File Hash               Payload

322ec0942cef33b4c55e5e939407cd02e295973e                  SHA1 File Hash               Payload

6335e08873b4ca3d0eac1ea265f89a9ef29023f2  SHA1 File Hash               Payload

134.213.29[.]14              IP             C2 Endpoint

185.243.115[.]250       IP             C2 Endpoint

80.92.205[.]239              IP             C2 Endpoint

194.36.171[.]43              IP             C2 Endpoint

92.118.112[.]60              IP             C2 Endpoint

109.120.178[.]253       IP             C2 Endpoint

23.163.0[.]111                 IP             C2 Endpoint

72.5.43[.]90     IP             C2 Endpoint

165.232.121[.]217       IP             C2 Endpoint

8.210.242[.]112              IP             C2 Endpoint

149.56.18[.]189              IP             C2 Endpoint

95.164.7[.]33  IP             C2 Endpoint

138.68.44[.]59                 IP             C2 Endpoint

Img[.]dxyjg[.]com         Hostname         C2 Endpoint

Darktrace Model Alert Coverage

·      Anomalous File / Masqueraded File Transfer

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External Locations

·      Anomalous File / Script from Rare External Location

·      Anomalous File / Script and EXE from Rare External

·      Anomalous File / Suspicious Octet Stream Download

·      Anomalous File / Numeric File Download

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·      Anomalous Connection / Suspicious Self-Signed SSL

·      Anomalous Connection / Anomalous SSL without SNI to New External

·      Anomalous Connection / Multiple Connections to New External TCP Port

·      Anomalous Connection / Rare External SSL Self-Signed

·      Anomalous Server Activity / Outgoing from Server

·      Anomalous Server Activity / Rare External from Server

·      Compromise / SSH Beacon

·      Compromise / Beacon for 4 Days

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Compromise / High Priority Tunnelling to Bin Services

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / Connection to Suspicious SSL Server

·      Compromise / Suspicious File and C2

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Slow Beaconing Activity To External Rare

·      Compromise / HTTP Beaconing to New Endpoint

·      Compromise / SSL or HTTP Beacon

·      Compromise / Suspicious HTTP and Anomalous Activity

·      Compromise / Beacon to Young Endpoint

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Suspicious Beaconing Behaviour

·      Compliance / SSH to Rare External Destination

·      Compromise / HTTP Beaconing to Rare Destination

·      Compromise / Beaconing Activity To External Rare

·      Device::New User Agent

·      Device / Initial Breach Chain Compromise

·      Device / Multiple C2 Model Breaches

MITRE ATTACK Mapping

Tactic – Technique

Initial Access  T1190 – Exploiting Public-Facing Application

Execution           T1059.004 – Command and Scripting Interpreter: Unix Shell

Persistence      T1543.002 – Create or Modify System Processes: Systemd Service

Defense Evasion           T1070.004 – Indicator Removal: File Deletion

Credential Access       T1110.001 – Brute Force: Password Guessing

Discovery           T1083 – File and System Discovery

T1057 – Process Discovery

Collection         T1005 – Data From Local System

Command and Control             T1071.001 – Application Layer Protocol:  Web Protocols

T1573.002 – Encrypted Channel: Asymmetric Cryptography

T1571 – Non-Standard Port

T1105 – Ingress Tool Transfer

Exfiltration         T1041 – Exfiltration over C2 Protocol

T1048.002 - Exfiltration Over Alternative Protocol: Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

References

[i]  https://www.ncsc.gov.uk/blog-post/products-on-your-perimeter

[ii] https://security.paloaltonetworks.com/CVE-2024-3400

[iii] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[iv] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[v] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[vi] https://security.paloaltonetworks.com/CVE-2024-3400

[vii] https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400/

[viii] https://www.volexity.com/blog/2024/05/15/detecting-compromise-of-cve-2024-3400-on-palo-alto-networks-globalprotect-devices/

Continue reading
About the author
Adam Potter
Cyber Analyst

Safeguarding Distribution Centers in the Digital Age

Default blog imageDefault blog image
12
Jun 2024

Challenges securing distribution centers

For large retail providers, e-commerce organizations, logistics & supply chain organizations, and other companies who rely on the distribution of goods to consumers cybersecurity efforts are often focused on an immense IT infrastructure. However, there's a critical, often overlooked segment of infrastructure that demands vigilant monitoring and robust protection: distribution centers.

Distribution centers play a critical role in the business operations of supply chains, logistics, and the retail industry. They serve as comprehensive logistics hubs, with many organizations operating multiple centers worldwide to meet consumer needs. Depending on their size and hours of operation, even just one hour of downtime at these centers can result in significant financial losses, ranging from tens to hundreds of thousands of dollars per hour.

Due to the time-sensitive nature and business criticality of distribution centers, there has been a rise in applying modern technologies now including AI applications to enhance efficiency within these facilities. Today’s distribution centers are increasingly connected to Enterprise IT networks, the cloud and the internet to manage every stage of the supply chain. Additionally, it is common for organizations to allow 3rd party access to the distribution center networks and data for reasons including allowing them to scale their operations effectively.

However, this influx of new technologies and interconnected systems across IT, OT and cloud introduces new risks on the cybersecurity front. Distribution center networks include industrial operational technologies ICS/OT, IoT technologies, enterprise network technology, and cloud systems working in coordination. The convergence of these technologies creates a greater chance that blind spots exist for security practitioners and this increasing presence of networked technology increases the attack surface and potential for vulnerability. Thus, having cybersecurity measures that cover IT, OT or Cloud alone is not enough to secure a complex and dynamic distribution center network infrastructure.  

The OT network encompasses various systems, devices, hardware, and software, such as:

  • Enterprise Resource Planning (ERP)
  • Warehouse Execution System (WES)
  • Warehouse Control System (WCS)
  • Warehouse Management System (WMS)
  • Energy Management Systems (EMS)
  • Building Management Systems (BMS)
  • Distribution Control Systems (DCS)
  • Enterprise IT devices
  • OT and IoT: Engineering workstations, ICS application and management servers, PLCs, HMI, access control, cameras, and printers
  • Cloud applications

Distribution centers: An expanding attack surface

As these distribution centers have become increasingly automated, connected, and technologically advanced, their attack surfaces have inherently increased. Distribution centers now have a vastly different potential for cyber risk which includes:  

  • More networked devices present
  • Increased routable connectivity within industrial systems
  • Externally exposed industrial control systems
  • Increased remote access
  • IT/OT enterprise to industrial convergence
  • Cloud connectivity
  • Contractors, vendors, and consultants on site or remoting in  

Given the variety of connected systems, distribution centers are more exposed to external threats than ever before. Simultaneously, distribution center’s business criticality has positioned them as interesting targets to cyber adversaries seeking to cause disruption with significant financial impact.

Increased connectivity requires a unified security approach

When assessing the unique distribution center attack surface, the variety of interconnected systems and devices requires a cybersecurity approach that can cover the diverse technology environment.  

From a monitoring and visibility perspective, siloed IT, OT or cloud security solutions cannot provide the comprehensive asset management, threat detection, risk management, and response and remediation capabilities across interconnected digital infrastructure that a solution natively covering IT, cloud, OT, and IoT can provide.  

The problem with using siloed cybersecurity solutions to cover a distribution center is the visibility gaps that are inherently created when using multiple solutions to try and cover the totality of the diverse infrastructure. What this means is that for cross domain and multi-stage attacks, depending on the initial access point and where the adversary plans on actioning their objectives, multiple stages of the attack may not be detected or correlated if they security solutions lack visibility into OT, IT, IoT and cloud.

Comprehensive security under one solution

Darktrace leverages Self-Learning AI, which takes a new approach to cybersecurity. Instead of relying on rules and signatures, this AI trains on the specific business to learn a ‘pattern of life’ that models normal activity for every device, user, and connection. It can be applied anywhere an organization has data, and so can natively cover IT, OT, IoT, and cloud.  

With these models, Darktrace /OT provides improved visibility, threat detection and response, and risk management for proactive hardening recommendations.  

Visibility: Darktrace is the only OT security solution that natively covers IT, IoT and OT in unison. AI augmented workflows ensure OT cybersecurity analysts and operation engineers can manage IT and OT environments, leveraging a live asset inventory and tailored dashboards to optimize security workflows and minimize operator workload.

Threat detection, investigation, and response: The AI facilitates anomaly detection capable of detecting known, unknown, and insider threats and precise response for OT environments that contains threats at their earliest stages before they can jeopardize control systems. Darktrace immediately understands, identifies, and investigates all anomalous activity in OT networks, whether human or machine driven and uses Explainable AI to generate investigation reports via Darktrace’s Cyber AI Analyst.

Proactive risk identification: Risk management capabilities like attack path modeling can prioritize remediation and mitigation that will most effectively reduce derived risk scores. Rather than relying on knowledge of past attacks and CVE lists and scores, Darktrace AI learns what is ‘normal’ for its environment, discovering previously unknown threats and risks by detecting subtle shifts in behavior and connectivity. Through the application of Darktrace AI for OT environments, security teams can investigate novel attacks, discover blind spots, get live-time visibility across all their physical and digital assets, and reduce the time to detect, respond to, and triage security events.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.