Blog
/
OT
/
May 11, 2023

Securing OT Systems: The Limits of the Air Gap Approach

Air-gapped security measures are not enough for resilience against cyber attacks. Read about how to gain visibility & reduce your cyber vulnerabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
May 2023

At a Glance:

  • Air gaps reduce cyber risk, but they do not prevent modern cyber attacks
  • Having visibility into an air-gapped network is better than assuming your defenses are impenetrable and having zero visibility
  • Darktrace can provide visibility and resiliency without jeopardizing the integrity of the air gap

What is an 'Air Gap'?

Information technology (IT) needs to fluidly connect with the outside world in order channel a flow of digital information across everything from endpoints and email systems to cloud and hybrid infrastructures. At the same time, this high level of connectivity makes IT systems particularly vulnerable to cyber-attacks.  

Operational technology (OT), which controls the operations of physical processes, are considerably more sensitive. OT often relies on a high degree of regularity to maintain continuity of operations. Even the slightest disturbance can lead to disastrous results. Just a few seconds of delay on a programmable logic controller (PLC), for example, can significantly disrupt a manufacturing assembly line, leading to downtime at a considerable cost. In worst-case scenarios, disruptions to OT can even threaten human safety. 

An air gap is a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Organizations with OT have traditionally tried to reconcile this conflict between IT and OT by attempting to separate them completely. Essentially, the idea is to let IT do what IT does best — facilitate activities like communication and data transfer at rapid speeds, thus allowing people to connect with each other and access information and applications in an efficient capacity. But at the same time, erect an air gap between IT and OT so that any cyber threats that slip into IT systems do not then spread laterally into highly sensitive, mission-critical OT systems. This air gap is essentially a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Limitations of the Air Gap

The air gap approach makes sense, but it is far from perfect. First, many organizations that believe they have completely air-gapped systems in fact have unknown points of IT/OT convergence, that is, connections between IT and OT networks of which they are unaware. 

Many organizations today are also intentionally embracing IT/OT convergence to reap the benefits of digital transformation of their OT, in what is often called Industry 4.0. Examples include the industrial cloud (or ICSaaS), the industrial internet of things (IIoT), and other types of cyber-physical systems that offer increased efficiency and expanded capabilities when compared to more traditional forms of OT. Organizations may also embrace IT/OT convergence due to a lack of human capital, as convergence can make processes simpler and more efficient.

Even when an organization does have a true air gap (which is nearly impossible to confirm without full visibility across IT and OT environments), the fact is that there are a variety of ways for attackers to ‘jump the air gap'. Full visibility across IT and OT ecosystems in a single pane of glass is thus essential for organizations seeking to secure their OT. This is not only to illuminate any points of IT/OT convergence and validate the fact that an air gap exists in the first place, but also to see when an attack slips through the air gap.

Figure 1: Darktrace/OT's unified view of IT and OT environments.

Air Gap Attack Vectors

Even a perfect air gap will be vulnerable to a variety of different attack vectors, including (but not limited to) the following: 

  • Physical compromise: An adversary bypasses physical security and gains access directly to the air-gapped network devices. Physical access is by far the most effective and obvious technique.
  • Insider threats: Someone who is part of an organization and has access to air-gapped secure systems intentionally or unintentionally compromises a system.
  • Supply chain compromise: A vendor with legitimate access to air-gapped systems unwittingly is compromised and brings infected devices into a network. 
  • Misconfiguration: Misconfiguration of access controls or permissions allows an attacker to access the air-gapped system through a separate device on the network.
  • Social engineering (media drop): If an attacker was able to successfully conduct a malicious USB/media drop and an employee was to use that media within the air-gapped system, the network could be compromised. 
  • Other advanced tactics: Thermal manipulation, covert surface vibrations, LEDs, ultrasonic transmissions, radio signals, and magnetic fields are among a range of advanced tactics documented and demonstrated by researchers at Ben Gurion University. 

Vulnerabilities of Air-Gapped Systems

Aside from susceptibility to advanced techniques, tactics, and procedures (TTPs) such as thermal manipulation and magnetic fields, more common vulnerabilities associated with air-gapped environments include factors such as unpatched systems going unnoticed, lack of visibility into network traffic, potentially malicious devices coming on the network undetected, and removable media being physically connected within the network. 

Once the attack is inside OT systems, the consequences can be disastrous regardless of whether there is an air gap or not. However, it is worth considering how the existence of the air gap can affect the time-to-triage and remediation in the case of an incident. For example, the existence of an air gap may seriously limit an incident response vendor’s ability to access the network for digital forensics and response. 

Kremlin Hackers Jumping the Air Gap 

In 2018, the U.S. Department of Homeland Security (DHS) issued an alert documenting the TTPs used by Russian threat actors known as Dragonfly and Energetic Bear. Further reporting alleged that these groups ‘jumped the air gap,’ and, concerningly, gained the ability to disable the grid at the time of their choosing. 

These attackers successfully gained access to sensitive air-gapped systems across the energy sector and other critical infrastructure sectors by targeting vendors and suppliers through spear-phishing emails and watering hole attacks. These vendors had legitimate access to air-gapped systems, and essentially brought the infection into these systems unintentionally when providing support services such as patch deployment.

This incident reveals that even if a sensitive OT system has complete digital isolation, this robust air gap still cannot fully eliminate one of the greatest vulnerabilities of any system—human error. Human error would still hold if an organization went to the extreme of building a faraday cage to eliminate electromagnetic radiation. Air-gapped systems are still vulnerable to social engineering, which exploits human vulnerabilities, as seen in the tactics that Dragonfly and Energetic Bear used to trick suppliers, who then walked the infection right through the front door. 

Ideally, a technology would be able to identify an attack regardless of whether it is caused by a compromised supplier, radio signal, or electromagnetic emission. By spotting subtle deviations from a device, human, or network’s normal ‘pattern of life’, Self-Learning AI detects even the most nuanced forms of threatening behavior as they emerge — regardless of the source or cause of the threat.

Darktrace/OT for Air-Gapped Environments

Darktrace/OT for air-gapped environments is a physical appliance that deploys directly to the air-gapped system. Using raw digital data from an OT network to understand the normal pattern of life, Darktrace/OT does not need any data or threat feeds from external sources because the AI builds an innate understanding of self without third-party support. 

Because all data-processing and analytics are performed locally on the Darktrace appliance, there is no requirement for Darktrace to have a connection out to the internet. As a result, Darktrace/OT provides visibility and threat detection to air-gapped or highly segmented networks without jeopardizing their integrity. If a human or machine displays even the most nuanced forms of threatening behavior, the solution can illuminate this in real time. 

Security professionals can then securely access Darktrace alerts from anywhere within the network, using a web browser and encrypted HTTPS, and in line with your organization’s network policies.

Figure 2: Darktrace/OT detecting anomalous connections to a SCADA ICS workstation.

With this deployment, Darktrace offers all the critical insights demonstrated in other Darktrace/OT deployments, including (but not limited to) the following:

Organizations seeking to validate whether they have an air gap in the first place and maintain the air gap as their IT and OT environments evolve will greatly benefit from the comprehensive visibility and continuous situational awareness offered by Darktrace’s Self-Learning AI. Also, organizations looking to poke holes in their air gap to embrace the benefits of IT/OT convergence will find that Self-Learning AI’s vigilance spots cyber-attacks that slip through. 

Whatever your organizations goals—be it embracing IIoT or creating a full-blown DMZ—by learning ‘you’, Darktrace’s Self-Learning AI can help you achieve them safely and securely. 

Learn more about Darktrace/OT

Credit to: Daniel Simonds and Oakley Cox for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement

More in this series

No items found.

Blog

/

Email

/

April 14, 2025

Email bombing exposed: Darktrace’s email defense in action

picture of a computer screen showing a password loginDefault blog imageDefault blog image

What is email bombing?

An email bomb attack, also known as a "spam bomb," is a cyberattack where a large volume of emails—ranging from as few as 100 to as many as several thousand—are sent to victims within a short period.

How does email bombing work?

Email bombing is a tactic that typically aims to disrupt operations and conceal malicious emails, potentially setting the stage for further social engineering attacks. Parallels can be drawn to the use of Domain Generation Algorithm (DGA) endpoints in Command-and-Control (C2) communications, where an attacker generates new and seemingly random domains in order to mask their malicious connections and evade detection.

In an email bomb attack, threat actors typically sign up their targeted recipients to a large number of email subscription services, flooding their inboxes with indirectly subscribed content [1].

Multiple threat actors have been observed utilizing this tactic, including the Ransomware-as-a-Service (RaaS) group Black Basta, also known as Storm-1811 [1] [2].

Darktrace detection of email bombing attack

In early 2025, Darktrace detected an email bomb attack where malicious actors flooded a customer's inbox while also employing social engineering techniques, specifically voice phishing (vishing). The end goal appeared to be infiltrating the customer's network by exploiting legitimate administrative tools for malicious purposes.

The emails in these attacks often bypass traditional email security tools because they are not technically classified as spam, due to the assumption that the recipient has subscribed to the service. Darktrace / EMAIL's behavioral analysis identified the mass of unusual, albeit not inherently malicious, emails that were sent to this user as part of this email bombing attack.

Email bombing attack overview

In February 2025, Darktrace observed an email bombing attack where a user received over 150 emails from 107 unique domains in under five minutes. Each of these emails bypassed a widely used and reputable Security Email Gateway (SEG) but were detected by Darktrace / EMAIL.

Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.
Figure 1: Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.

The emails varied in senders, topics, and even languages, with several identified as being in German and Spanish. The most common theme in the subject line of these emails was account registration, indicating that the attacker used the victim’s address to sign up to various newsletters and subscriptions, prompting confirmation emails. Such confirmation emails are generally considered both important and low risk by email filters, meaning most traditional security tools would allow them without hesitation.

Additionally, many of the emails were sent using reputable marketing tools, such as Mailchimp’s Mandrill platform, which was used to send almost half of the observed emails, further adding to their legitimacy.

 Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Figure 2: Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.
Figure 3: Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.

While the individual emails detected were typically benign, such as the newsletter from a legitimate UK airport shown in Figure 3, the harmful aspect was the swarm effect caused by receiving many emails within a short period of time.

Traditional security tools, which analyze emails individually, often struggle to identify email bombing incidents. However, Darktrace / EMAIL recognized the unusual volume of new domain communication as suspicious. Had Darktrace / EMAIL been enabled in Autonomous Response mode, it would have automatically held any suspicious emails, preventing them from landing in the recipient’s inbox.

Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.
Figure 4: Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.

Following the initial email bombing, the malicious actor made multiple attempts to engage the recipient in a call using Microsoft Teams, while spoofing the organizations IT department in order to establish a sense of trust and urgency – following the spike in unusual emails the user accepted the Teams call. It was later confirmed by the customer that the attacker had also targeted over 10 additional internal users with email bombing attacks and fake IT calls.

The customer also confirmed that malicious actor successfully convinced the user to divulge their credentials with them using the Microsoft Quick Assist remote management tool. While such remote management tools are typically used for legitimate administrative purposes, malicious actors can exploit them to move laterally between systems or maintain access on target networks. When these tools have been previously observed in the network, attackers may use them to pursue their goals while evading detection, commonly known as Living-off-the-Land (LOTL).

Subsequent investigation by Darktrace’s Security Operations Centre (SOC) revealed that the recipient's device began scanning and performing reconnaissance activities shortly following the Teams call, suggesting that the user inadvertently exposed their credentials, leading to the device's compromise.

Darktrace’s Cyber AI Analyst was able to identify these activities and group them together into one incident, while also highlighting the most important stages of the attack.

Figure 5: Cyber AI Analyst investigation showing the initiation of the reconnaissance/scanning activities.

The first network-level activity observed on this device was unusual LDAP reconnaissance of the wider network environment, seemingly attempting to bind to the local directory services. Following successful authentication, the device began querying the LDAP directory for information about user and root entries. Darktrace then observed the attacker performing network reconnaissance, initiating a scan of the customer’s environment and attempting to connect to other internal devices. Finally, the malicious actor proceeded to make several SMB sessions and NTLM authentication attempts to internal devices, all of which failed.

Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Figure 6: Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.
Figure 7: Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.

While Darktrace’s Autonomous Response capability suggested actions to shut down this suspicious internal connectivity, the deployment was configured in Human Confirmation Mode. This meant any actions required human approval, allowing the activities to continue until the customer’s security team intervened. If Darktrace had been set to respond autonomously, it would have blocked connections to port 445 and enforced a “pattern of life” to prevent the device from deviating from expected activities, thus shutting down the suspicious scanning.

Conclusion

Email bombing attacks can pose a serious threat to individuals and organizations by overwhelming inboxes with emails in an attempt to obfuscate potentially malicious activities, like account takeovers or credential theft. While many traditional gateways struggle to keep pace with the volume of these attacks—analyzing individual emails rather than connecting them and often failing to distinguish between legitimate and malicious activity—Darktrace is able to identify and stop these sophisticated attacks without latency.

Thanks to its Self-Learning AI and Autonomous Response capabilities, Darktrace ensures that even seemingly benign email activity is not lost in the noise.

Credit to Maria Geronikolou (Cyber Analyst and SOC Shift Supervisor) and Cameron Boyd (Cyber Security Analyst), Steven Haworth (Senior Director of Threat Modeling), Ryan Traill (Analyst Content Lead)

Appendices

[1] https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/

[2] https://thehackernews.com/2024/12/black-basta-ransomware-evolves-with.html

Darktrace Models Alerts

Internal Reconnaissance

·      Device / Suspicious SMB Scanning Activity

·      Device / Anonymous NTLM Logins

·      Device / Network Scan

·      Device / Network Range Scan

·      Device / Suspicious Network Scan Activity

·      Device / ICMP Address Scan

·      Anomalous Connection / Large Volume of LDAP Download

·      Device / Suspicious LDAP Search Operation

·      Device / Large Number of Model Alerts

Continue reading
About the author
Maria Geronikolou
Cyber Analyst

Blog

/

Email

/

April 11, 2025

FedRAMP High-compliant email security protects federal agencies from nation-state attacks

U.S. government building with flag against blue skyDefault blog imageDefault blog image

What is FedRAMP High Authority to Operate (ATO)?

Federal Risk and Authorization Management Program (FedRAMP®) High is a government-wide program that promotes the adoption of secure cloud services across the federal government by providing a standardized approach to security and risk assessment for cloud technologies and federal agencies, ensuring the protection of federal information.  

Cybersecurity is paramount in the Defense Industrial Base (DIB), where protecting sensitive information and ensuring operational resilience from the most sophisticated adversaries has national security implications. Organizations within the DIB must comply with strict security standards to work with the U.S. federal government, and FedRAMP High is one of those standards.

Darktrace achieves FedRAMP High ATO across IT, OT, and email

Last week, Darktrace Federal shared that we achieved FedRAMP® High ATO, a significant milestone that recognizes our ability to serve federal customers across IT, OT, and email via secure cloud-native deployments.  

Achieving the FedRAMP High ATO indicates that Darktrace Federal has achieved the highest standard for cloud security controls and can handle the U.S. federal government’s most sensitive, unclassified data in cloud environments.

Azure Government email security with FedRAMP High ATO

Darktrace has now released Darktrace Commercial Government Cloud High/Email (DCGC High/Email). This applies our email coverage to systems hosted in Microsoft's Azure Government, which adheres to NIST SP 800-53 controls and other federal standards. DCGC High/Email both meets and exceeds the compliance requirements of the Department of Defense’s Cybersecurity Maturity Model Certification (CMMC), providing organizations with a much-needed email security solution that delivers unparalleled, AI-driven protection against sophisticated cyber threats.

In these ways, DCGC High/Email enhances compliance, security, and operational resilience for government and federally-affiliated customers. Notably, it is crucial for securing contractors and suppliers within DIB, helping those organizations implement necessary cybersecurity practices to protect Controlled Unclassified Information (CUI) and Federal Contract Information (FCI).

Adopting DCGC High/Email ensures organizations within the DIB can work with the government without needing to invest extensive time and money into meeting the strict compliance standards.

Building DCGC High/Email to ease DIB work with the government

DCGC High/Email was built to achieve FedRAMP High standards and meet the most rigorous security standards required of our customers. This level of compliance not only allows more organizations than ever to leverage our AI-driven technology, but also ensures that customer data is protected by the highest security measures available.

The DIB has never been more critical to national security, which means they are under constant threats from nation state and cyber criminals. We built DCGC High/Email to FedRAMP High controls to ensure sensitive company and federal government communications are secured at the highest level possible.” – Marcus Fowler, CEO of Darktrace Federal

Evolving threats now necessitate DCGC High/Email

According to Darktrace’s 2025 State of AI Cybersecurity report, more than half (54%) of global government cybersecurity professionals report seeing a significant impact from AI-powered cyber threats.  

These aren’t the only types of sophisticated threats. Advanced Persistent Threats (APTs) are launched by nation-states or cyber-criminal groups with the resources to coordinate and achieve long-term objectives.  

These attacks are carefully tailored to specific targets, using techniques like social engineering and spear phishing to gain initial access via the inbox. Once inside, attackers move laterally through networks, often remaining undetected for months or even years, silently gathering intelligence or preparing for a decisive strike.  

However, the barrier for entry for these threat actors has been lowered immensely, likely related to the observed impact of AI-powered cyber threats. Securing email environments is more important than ever.  

Darktrace’s 2025 State of AI Cybersecurity report also found that 89% of government cybersecurity professionals believe AI can help significantly improve their defensive capabilities.  

Darktrace's AI-powered defensive tools are uniquely capable of detecting and neutralizing APTs and other sophisticated threats, including ones that enter via the inbox. Our Self-Learning AI continuously adapts to evolving threats, providing real-time protection.

Darktrace builds to secure the DIB to the highest degree

In summary, Darktrace Federal's achievement of FedRAMP High ATO and the introduction of DCGC High/Email mark significant advancements in our ability to protect defense contractors and federal customers against sophisticated threats that other solutions miss.

For a technical review of Darktrace Federal’s Cyber AI Mission Defense™ solution, download an independent evaluation from the Technology Advancement Center here.

[related-resource]

Continue reading
About the author
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Your data. Our AI.
Elevate your network security with Darktrace AI