Blog
/
/
August 5, 2020

Guarding Against Threats Beyond IT

We explore insights from a vast customer database, exposing the widespread adoption of ICS protocols within IT settings.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Aug 2020

Key takeaways

  • Multiple well-known ICS attacks have been successful by gaining an initial foothold into the IT network, such as EKANS, Black Energy, and Havex
  • Stage One of the ICS Cyber Kill Chain is network reconnaissance, and so IT/OT network segregation is critical
  • Darktrace finds that many organizations’ networks have at least some level of IT/OT convergence
  • Visibility across ICS infrastructure, actions, and commands provides a better picture into potentially malicious internal activity

IT & OT Convergence Threats

Shipping, manufacturing, and other forms of heavy industry are seeing an ever-increasing convergence of IT and OT systems with the growth in Industrial Internet of Things (IIoT). At the same time, it remains critical to segment IT from OT networks, as the lack of segmentation could provide a malicious actor – either a hacker or rogue insider – easy access to pivot into the OT network.

High-profile attack campaigns such as Havex or Black Energy show traditional network security monitoring tools can be insufficient in preventing these intrusions. After the initial compromise, these ICS attacks progressed from IT to OT systems, showing that the convergence of IT and OT in cyber-physical ecosystems calls for technology that can understand how these two systems interact.

More recently, analysis of the EKANS ransomware revealed that attackers are attempting to use malware to actively disrupt OT as well as IT networks. The attack contained ICS processes on its ‘kill list,’ which allowed it to halt global manufacturing for large organizations like Honda.

More often than not, a lack of visibility is a major challenge in protecting critical ICS assets. Security specialists benefit when they have visibility over unusual or unexpected connections, or more crucially, when ICS commands are being sent by malicious actors attempting to perform industrial sabotage.

Investigation details

Darktrace analysts investigated the use of industrial protocols in the enterprise environments of various customers. The industries ranged from banking to government, retail to food manufacturing and beyond, and included companies with Industrial Control Systems that leverage Darktrace to defend their corporate networks.

In some cases, the security teams may not have been aware of IT/OT convergence within their enterprise environments. In other cases, the IT team may be aware of the ICS segments, but do not see them as a security priority because it does not fall directly within their remit.

The results revealed that hundreds of companies are using OT protocols in their enterprise environments, which suggests that IT/OT systems are not properly segmented. Specifically, Darktrace detected over 6,500 suspected instances of ICS protocol use across 1,000 environments. Note that this data was collected anonymously, only keeping track of the industry for analysis purposes.

Figure 1: A chart showing the percentage of ICS protocol use in enterprise environments

The ICS protocol which was detected the most was BacNet, seen in approximately 75% of instances. BacNet is used in Building Management Systems, so it is not surprising that it is widely used across multiple industries and within corporate networks. It is likely the security teams are aware that their BMS is part of the enterprise network, but may not appreciate how its use of the BacNet OT protocol increases the attack surface for the business and can be a blind spot for security teams.

Core ICS protocols

Darktrace also detected ‘core’ ICS protocols, Modbus and CIP (Common Industrial Protocol). These are normally associated with traditional ICS industries such as manufacturing, oil and gas, robotics, and utilities, and provides further evidence of IT/OT convergence.

This increased IT/OT convergence creates new blind spots on the network and sets up new pathways to disruption. This offers opportunities for attackers, and the public are now increasingly aware of attacks that have pivoted from IT into OT.

Improper segmentation between IT and OT systems can lead to highly unusual connections to ICS protocols. This can be seen in our recent analysis of industrial sabotage, with the timeline of the attack’s main events presented below.

Figure 2: A timeline showing the events of an incident of industrial sabotage

This is just one example of an attack that began in IT systems before affecting OT. More high-profile attacks that follow this pattern are presented below:

EKANS ransomware

The recent EKANS attack involved a strain of ransomware with close links to the MEGACORTEX variant, which gained infamy following an attack on Honda’s global operations in June 2020. Like many ransomware variants, EKANS encrypts files in IT systems and demands ransom in order to unlock the infected machines. However, the malware also has the ability to kill ICS processes on infected hosts. Notably, it is the first public example of ransomware that can target ICS operations.

Havex

Havex utilized multiple attack vectors, including spear phishing, trojans, and infected vendor websites, often known as a ‘watering hole attack’. It targeted IT systems, Internet-connected workstations, or a combination of the two. With Havex, attackers leveraged lateral movement techniques to pivot into Level 3 of ICS networks. The attack’s motive was data exfiltration to a C2 server, likely as part of a government-backed espionage campaign.

Black Energy 3

Black Energy 3 favored macro-embedded MS Office documents delivered via spear phishing emails as attack vectors. Older variants of Black Energy targeted vulnerabilities in ICS HMIs (Human Machine Interfaces) which were connected to the Internet. The attack’s motive was industrial sabotage and is what was used against the Ukrainian electric grid in 2015, leading to power outages for over 225,000 civilians and requiring a switch to manual operations as substations were taken offline.

Lessons learned

Each of the attack campaigns detailed above was in some way enabled by IT/OT convergence. Attackers still favor targeting IT networks with their initial attack vectors, as IT networks have significantly more interaction with the Internet through emails, and various other interconnected technologies. Poor network segmentation allows attackers easy access to OT systems once an IT network has been compromised.

In all of these ICS cyber-attacks, devices deviated from their normal patterns of life at one or more points in the cyber kill chain. Indicators of compromise can include anything from new external connections, to network reconnaissance using active scanning, to lateral movement using privileged credentials, ICS reprogram commands, or ICS discovery requests. With proper enterprise-wide visibility, across both IT and OT systems, and security tools that are able to detect these deviations, a security team would be alerted to these compromises before an attacker could carry out their objectives.

Ultimately, visibility is crucial for cyber defenders to protect industrial property and processes. Darktrace/OT enables many Industrial Model Detections, a selection of which are listed below:

  • Anomalous IT to ICS Connection
  • Multiple Failed Connections to OT Device
  • Multiple New Action Commands
  • Uncommon ICS Reprogram
  • Suspicious Network Scanning Activity
  • Unusual Broadcast from ICS PLC
  • Unusual Admin RDP Session

It is clear that attackers continue to exploit increasing IT/OT convergence to carry out industrial sabotage. Still, as revealed by our analysis of our customer base, many organizations continue to unknowingly use ICS protocols in their corporate environments, both increasing their attack surface and creating dangerous blind spots. A new, holistic approach to cyber defense is needed – one that can reveal this convergence of IT and OT, provide visibility, and detect deviations indicative of emerging cyber-attacks against critical systems.

Thanks to Darktrace analyst Oakley Cox for his insights on the above investigation.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI