Blog
/
OT
/
May 11, 2023

Securing OT Systems: The Limits of the Air Gap Approach

Air-gapped security measures are not enough for resilience against cyber attacks. Read about how to gain visibility & reduce your cyber vulnerabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
May 2023

At a Glance:

  • Air gaps reduce cyber risk, but they do not prevent modern cyber attacks
  • Having visibility into an air-gapped network is better than assuming your defenses are impenetrable and having zero visibility
  • Darktrace can provide visibility and resiliency without jeopardizing the integrity of the air gap

What is an 'Air Gap'?

Information technology (IT) needs to fluidly connect with the outside world in order channel a flow of digital information across everything from endpoints and email systems to cloud and hybrid infrastructures. At the same time, this high level of connectivity makes IT systems particularly vulnerable to cyber-attacks.  

Operational technology (OT), which controls the operations of physical processes, are considerably more sensitive. OT often relies on a high degree of regularity to maintain continuity of operations. Even the slightest disturbance can lead to disastrous results. Just a few seconds of delay on a programmable logic controller (PLC), for example, can significantly disrupt a manufacturing assembly line, leading to downtime at a considerable cost. In worst-case scenarios, disruptions to OT can even threaten human safety. 

An air gap is a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Organizations with OT have traditionally tried to reconcile this conflict between IT and OT by attempting to separate them completely. Essentially, the idea is to let IT do what IT does best — facilitate activities like communication and data transfer at rapid speeds, thus allowing people to connect with each other and access information and applications in an efficient capacity. But at the same time, erect an air gap between IT and OT so that any cyber threats that slip into IT systems do not then spread laterally into highly sensitive, mission-critical OT systems. This air gap is essentially a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Limitations of the Air Gap

The air gap approach makes sense, but it is far from perfect. First, many organizations that believe they have completely air-gapped systems in fact have unknown points of IT/OT convergence, that is, connections between IT and OT networks of which they are unaware. 

Many organizations today are also intentionally embracing IT/OT convergence to reap the benefits of digital transformation of their OT, in what is often called Industry 4.0. Examples include the industrial cloud (or ICSaaS), the industrial internet of things (IIoT), and other types of cyber-physical systems that offer increased efficiency and expanded capabilities when compared to more traditional forms of OT. Organizations may also embrace IT/OT convergence due to a lack of human capital, as convergence can make processes simpler and more efficient.

Even when an organization does have a true air gap (which is nearly impossible to confirm without full visibility across IT and OT environments), the fact is that there are a variety of ways for attackers to ‘jump the air gap'. Full visibility across IT and OT ecosystems in a single pane of glass is thus essential for organizations seeking to secure their OT. This is not only to illuminate any points of IT/OT convergence and validate the fact that an air gap exists in the first place, but also to see when an attack slips through the air gap.

Figure 1: Darktrace/OT's unified view of IT and OT environments.

Air Gap Attack Vectors

Even a perfect air gap will be vulnerable to a variety of different attack vectors, including (but not limited to) the following: 

  • Physical compromise: An adversary bypasses physical security and gains access directly to the air-gapped network devices. Physical access is by far the most effective and obvious technique.
  • Insider threats: Someone who is part of an organization and has access to air-gapped secure systems intentionally or unintentionally compromises a system.
  • Supply chain compromise: A vendor with legitimate access to air-gapped systems unwittingly is compromised and brings infected devices into a network. 
  • Misconfiguration: Misconfiguration of access controls or permissions allows an attacker to access the air-gapped system through a separate device on the network.
  • Social engineering (media drop): If an attacker was able to successfully conduct a malicious USB/media drop and an employee was to use that media within the air-gapped system, the network could be compromised. 
  • Other advanced tactics: Thermal manipulation, covert surface vibrations, LEDs, ultrasonic transmissions, radio signals, and magnetic fields are among a range of advanced tactics documented and demonstrated by researchers at Ben Gurion University. 

Vulnerabilities of Air-Gapped Systems

Aside from susceptibility to advanced techniques, tactics, and procedures (TTPs) such as thermal manipulation and magnetic fields, more common vulnerabilities associated with air-gapped environments include factors such as unpatched systems going unnoticed, lack of visibility into network traffic, potentially malicious devices coming on the network undetected, and removable media being physically connected within the network. 

Once the attack is inside OT systems, the consequences can be disastrous regardless of whether there is an air gap or not. However, it is worth considering how the existence of the air gap can affect the time-to-triage and remediation in the case of an incident. For example, the existence of an air gap may seriously limit an incident response vendor’s ability to access the network for digital forensics and response. 

Kremlin Hackers Jumping the Air Gap 

In 2018, the U.S. Department of Homeland Security (DHS) issued an alert documenting the TTPs used by Russian threat actors known as Dragonfly and Energetic Bear. Further reporting alleged that these groups ‘jumped the air gap,’ and, concerningly, gained the ability to disable the grid at the time of their choosing. 

These attackers successfully gained access to sensitive air-gapped systems across the energy sector and other critical infrastructure sectors by targeting vendors and suppliers through spear-phishing emails and watering hole attacks. These vendors had legitimate access to air-gapped systems, and essentially brought the infection into these systems unintentionally when providing support services such as patch deployment.

This incident reveals that even if a sensitive OT system has complete digital isolation, this robust air gap still cannot fully eliminate one of the greatest vulnerabilities of any system—human error. Human error would still hold if an organization went to the extreme of building a faraday cage to eliminate electromagnetic radiation. Air-gapped systems are still vulnerable to social engineering, which exploits human vulnerabilities, as seen in the tactics that Dragonfly and Energetic Bear used to trick suppliers, who then walked the infection right through the front door. 

Ideally, a technology would be able to identify an attack regardless of whether it is caused by a compromised supplier, radio signal, or electromagnetic emission. By spotting subtle deviations from a device, human, or network’s normal ‘pattern of life’, Self-Learning AI detects even the most nuanced forms of threatening behavior as they emerge — regardless of the source or cause of the threat.

Darktrace/OT for Air-Gapped Environments

Darktrace/OT for air-gapped environments is a physical appliance that deploys directly to the air-gapped system. Using raw digital data from an OT network to understand the normal pattern of life, Darktrace/OT does not need any data or threat feeds from external sources because the AI builds an innate understanding of self without third-party support. 

Because all data-processing and analytics are performed locally on the Darktrace appliance, there is no requirement for Darktrace to have a connection out to the internet. As a result, Darktrace/OT provides visibility and threat detection to air-gapped or highly segmented networks without jeopardizing their integrity. If a human or machine displays even the most nuanced forms of threatening behavior, the solution can illuminate this in real time. 

Security professionals can then securely access Darktrace alerts from anywhere within the network, using a web browser and encrypted HTTPS, and in line with your organization’s network policies.

Figure 2: Darktrace/OT detecting anomalous connections to a SCADA ICS workstation.

With this deployment, Darktrace offers all the critical insights demonstrated in other Darktrace/OT deployments, including (but not limited to) the following:

Organizations seeking to validate whether they have an air gap in the first place and maintain the air gap as their IT and OT environments evolve will greatly benefit from the comprehensive visibility and continuous situational awareness offered by Darktrace’s Self-Learning AI. Also, organizations looking to poke holes in their air gap to embrace the benefits of IT/OT convergence will find that Self-Learning AI’s vigilance spots cyber-attacks that slip through. 

Whatever your organizations goals—be it embracing IIoT or creating a full-blown DMZ—by learning ‘you’, Darktrace’s Self-Learning AI can help you achieve them safely and securely. 

Learn more about Darktrace/OT

Credit to: Daniel Simonds and Oakley Cox for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement

More in this series

No items found.

Blog

/

Proactive Security

/

October 23, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author

Blog

/

Proactive Security

/

October 23, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI