Blog
/

OT

Threat Finds

/
February 11, 2021

Detecting IoT Threats in Control Systems

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2021
Discover how Darktrace uncovers pre-existing threats in Industrial IoT systems. Learn about advanced detection techniques in industrial control systems.

Industrial IoT (IIoT) devices are a pressing concern for security teams. Companies invest large sums of money to keep cyber-criminals out of industrial systems, but what happens when the hacker is already inside? Gateways and legacy security tools generally sit at the border of an organization and are designed to stop external threats, but are less effective once the threat is already inside. During this period, cyber-criminals carry out further reconnaissance, tamper with PLC settings, and subtly disrupt the production process.

Darktrace recently detected a series of pre-existing infections in Industrial IoT (IIoT) devices at a manufacturing firm in the EMEA region. The organization already had Darktrace in place in one area of the environment, but after seeing how the AI could successfully detect zero-day vulnerabilities and threats, they expanded the deployment, allowing Darktrace to actively monitor and defend interactions among its 5,000 devices, and dramatically improving visibility.

An unknown emerging threat was identified by Darktrace’s Industrial Immune System on multiple machines within hours of Darktrace being active in the environment. By casting light on this previously unknown threat, Darktrace enabled the customer to perform full incident response and threat investigation, before the attacker was able to cause any serious damage to the company.

Though it is unclear how long the devices had been infected, it is likely to have been first introduced manually via an infected USB. The affected endpoints were being used as part of a continuous production process and could not be installed with endpoint protection.

The Industrial Immune System, however, easily detects infections across the digital estate, regardless of the type of environment or technology. Darktrace AI does not rely on signature-based methods but instead continuously updates its understanding of what constitutes ‘normal’ in an industrial environment. This self-learning approach allows the AI to contain zero-days that have never been seen before in the wild, as well as detecting the new appearance of pre-existing attacks.

Industrial IoT attacked

Only a few hours after Darktrace AI had begun defending the wider connections and interactions across the manufacturing firm, the Industrial Immune System detected a highly unusual network scan. A timeline of events, from first scan to full incident response results and conclusions, is shown below:

Figure 1: Timeline of incident response across 28 hours

Darktrace’s AI recognized that the device was exploiting an SMBv1 protocol in order to attempt lateral movement. In addition to anonymous SMBv1 authentication, Darktrace detected the device abusing default vendor credentials for device enumeration.

The device made a large number of unusual connections, including connections to internal endpoints which the company had previously been unaware of. As these occurred, the Threat Visualizer, Darktrace’s user interface, provided a graphical visualization of the incident, illuminating the unusual activity’s spread from the infected device across the infrastructure in question.

Figure 2: The Darktrace Threat Visualizer

Darktrace’s Immune System identified that the infected Industrial IoT device was making an unusually large number of internal connections, suggesting an effort to perform reconnaissance.

Darktrace’s Cyber AI Analyst launched an immediate investigation into the alert, surfacing an incident summary at machine speed with all the information the security team needed to act.

Figure 3: An example of an AI Analyst Report on a network scan

The Cyber AI Analyst further identified two other devices behaving in a similar way, and these were removed from the network by the customer in response. When investigated by the security team, these devices were shown to be infected with the Yalove and Renocide worms, and the Autoit trojan-dropper. Open source intelligence suggests these infections are often spread via removable media such as USB drives.

Using Darktrace’s Advanced Search function, the customer was able to investigate related model breaches to build a list of similar indicators of compromise (IoCs), including failed external connections to www.whatismyip[.]com and DYNDNS IP addresses on HTTP port 80.

Recurring infections: How to deal with a persistent attack

In total, Darktrace was used to identify 13 infected production devices. The customer contacted the equipment owner, whose response confirmed that they had seen similar attacks on other networks in the past, including recurring infections.

Recurring infections imply one of two things: either, that the malware has a persistence mechanism, where it uses a range of techniques to remain undetected on the exploited machine and achieve persistent access to the system. Alternatively, a recurring infection could mean that the IoT manufacturer was not able to find all infected devices when they were first alerted to the compromise, and thus did not shut down the attack in its entirety.

As the infected machines are owned by a third party, they could not be immediately remediated. Darktrace AI, however, contained this threat with minimal business disruption. The customer was able to leave the infected devices active, which were still needed for production, confident that Darktrace would alert them if the infection spread or changed in behavior.

Industrial IoT: Shining a light on pre-existing threats

The mass adoption of Industrial IoT devices has made industrial environments more complex and more vulnerable than ever. This blog demonstrates the prevalent threat that attackers are already on the inside, and the importance for security teams to expand visibility over their full industrial system. In this case, the customer was able to use Darktrace’s AI to illuminate a previous blind spot and contain a persistent attack, while minimizing disruption to operations. Crucially, this ‘unknown known’ threat was detected without any prior knowledge of the devices, their supplier, or patch history, and without using malware signatures or IoCs.

The customer was made aware of the infection via the Darktrace SOC service. Yet the same outcome could have been obtained with other workflows provided by Darktrace, such as email alerting, notifications through the Darktrace mobile app, seamlessly integrating Darktrace with a SIEM solution, or alerting via an internal SOC.

Cyber AI Analyst enabled the customer to perform immediate incident response. While waiting for a reinstallation date with the equipment owner, the customer could keep the production devices online, knowing Darktrace would be monitoring the outstanding risk. In an industrial setting, trade-offs like this are often necessary to sustain production. Darktrace helps organizations maintain the vigilance they need to do this securely, and when remediation does become possible, Darktrace can be used to reliably locate the full extent of the infection.

Thanks to Darktrace analyst Oakley Cox for his insights on the above threat find.

Find out more about the Industrial Immune System

Darktrace model detections:

  • Device / Suspicious Network Scan Activity [Enhanced Monitoring]
  • Device / ICMP Address Scan
  • ICS / Anomalous IT to ICS Connection
  • Anomalous Connection / SMB Enumeration
  • Device / Network Scan

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
David Masson
VP, Enterprise Security

David Masson is Darktrace’s Director of Enterprise Security, and has over two decades of experience working in fast moving security and intelligence environments in the UK, Canada and worldwide. With skills developed in the civilian, military and diplomatic worlds, he has been influential in the efficient and effective resolution of various unique national security issues. David is an operational solutions expert and has a solid reputation across the UK and Canada for delivery tailored to customer needs. At Darktrace, David advises strategic customers across North America and is also a regular contributor to major international and national media outlets in Canada where he is based. He holds a master’s degree from Edinburgh University.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

October 4, 2024

/

Inside the SOC

From Call to Compromise: Darktrace’s Response to a Vishing-Induced Network Attack

Default blog imageDefault blog image

What is vishing?

Vishing, or voice phishing, is a type of cyber-attack that utilizes telephone devices to deceive targets. Threat actors typically use social engineering tactics to convince targets that they can be trusted, for example, by masquerading as a family member, their bank, or trusted a government entity. One method frequently used by vishing actors is to intimidate their targets, convincing them that they may face monetary fines or jail time if they do not provide sensitive information.

What makes vishing attacks dangerous to organizations?

Vishing attacks utilize social engineering tactics that exploit human psychology and emotion. Threat actors often impersonate trusted entities and can make it appear as though a call is coming from a reputable or known source.  These actors often target organizations, specifically their employees, and pressure them to obtain sensitive corporate data, such as privileged credentials, by creating a sense of urgency, intimidation or fear. Corporate credentials can then be used to gain unauthorized access to an organization’s network, often bypassing traditional security measures and human security teams.

Darktrace’s coverage of vishing attack

On August 12, 2024, Darktrace / NETWORK identified malicious activity on the network of a customer in the hospitality sector. The customer later confirmed that a threat actor had gained unauthorized access through a vishing attack. The attacker successfully spoofed the IT support phone number and called a remote employee, eventually leading to the compromise.

Figure 1: Timeline of events in the kill chain of this attack.

Establishing a Foothold

During the call, the remote employee was requested to authenticate via multi-factor authentication (MFA). Believing the caller to be a member of their internal IT support, using the legitimate caller ID, the remote user followed the instructions and confirmed the MFA prompt, providing access to the customer’s network.

This authentication allowed the threat actor to login into the customer’s environment by proxying through their Virtual Private Network (VPN) and gain a foothold in the network. As remote users are assigned the same static IP address when connecting to the corporate environment, the malicious actor appeared on the network using the correct username and IP address. While this stealthy activity might have evaded traditional security tools and human security teams, Darktrace’s anomaly-based threat detection identified an unusual login from a different hostname by analyzing NTLM requests from the static IP address, which it determined to be anomalous.

Observed Activity

  • On 2024-08-12 the static IP was observed using a credential belonging to the remote user to initiate an SMB session with an internal domain controller, where the authentication method NTLM was used
  • A different hostname from the usual hostname associated with this remote user was identified in the NTLM authentication request sent from a device with the static IP address to the domain controller
  • This device does not appear to have been seen on the network prior to this event.

Darktrace, therefore, recognized that this login was likely made by a malicious actor.

Internal Reconnaissance

Darktrace subsequently observed the malicious actor performing a series of reconnaissance activities, including LDAP reconnaissance, device hostname reconnaissance, and port scanning:

  • The affected device made a 53-second-long LDAP connection to another internal domain controller. During this connection, the device obtained data about internal Active Directory (AD) accounts, including the AD account of the remote user
  • The device made HTTP GET requests (e.g., HTTP GET requests with the Target URI ‘/nice ports,/Trinity.txt.bak’), indicative of Nmap usage
  • The device started making reverse DNS lookups for internal IP addresses.
Figure 2: Model alert showing the IP address from which the malicious actor connected and performed network scanning activities via port 9401.
Figure 3: Model Alert Event Log showing the affected device connecting to multiple internal locations via port 9401.

Lateral Movement

The threat actor was also seen making numerous failed NTLM authentication requests using a generic default Windows credential, indicating an attempt to brute force and laterally move through the network. During this activity, Darktrace identified that the device was using a different hostname than the one typically used by the remote employee.

Cyber AI Analyst

In addition to the detection by Darktrace / NETWORK, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the ongoing activity. The investigation was able to correlate the seemingly separate events together into a broader incident, continuously adding new suspicious linked activities as they occurred.

Figure 4: Cyber AI Analyst investigation showing the activity timeline, and the activities associated with the incident.

Upon completing the investigation, Cyber AI Analyst provided the customer with a comprehensive summary of the various attack phases detected by Darktrace and the associated incidents. This clear presentation enabled the customer to gain full visibility into the compromise and understand the activities that constituted the attack.

Figure 5: Cyber AI Analyst displaying the observed attack phases and associated model alerts.

Darktrace Autonomous Response

Despite the sophisticated techniques and social engineering tactics used by the attacker to bypass the customer’s human security team and existing security stack, Darktrace’s AI-driven approach prevented the malicious actor from continuing their activities and causing more harm.

Darktrace’s Autonomous Response technology is able to enforce a pattern of life based on what is ‘normal’ and learned for the environment. If activity is detected that represents a deviation from expected activity from, a model alert is triggered. When Darktrace’s Autonomous Response functionality is configured in autonomous response mode, as was the case with the customer, it swiftly applies response actions to devices and users without the need for a system administrator or security analyst to perform any actions.

In this instance, Darktrace applied a number of mitigative actions on the remote user, containing most of the activity as soon as it was detected:

  • Block all outgoing traffic
  • Enforce pattern of life
  • Block all connections to port 445 (SMB)
  • Block all connections to port 9401
Figure 6: Darktrace’s Autonomous Response actions showing the actions taken in response to the observed activity, including blocking all outgoing traffic or enforcing the pattern of life.

Conclusion

This vishing attack underscores the significant risks remote employees face and the critical need for companies to address vishing threats to prevent network compromises. The remote employee in this instance was deceived by a malicious actor who spoofed the phone number of internal IT Support and convinced the employee to perform approve an MFA request. This sophisticated social engineering tactic allowed the attacker to proxy through the customer’s VPN, making the malicious activity appear legitimate due to the use of static IP addresses.

Despite the stealthy attempts to perform malicious activities on the network, Darktrace’s focus on anomaly detection enabled it to swiftly identify and analyze the suspicious behavior. This led to the prompt determination of the activity as malicious and the subsequent blocking of the malicious actor to prevent further escalation.

While the exact motivation of the threat actor in this case remains unclear, the 2023 cyber-attack on MGM Resorts serves as a stark illustration of the potential consequences of such threats. MGM Resorts experienced significant disruptions and data breaches following a similar vishing attack, resulting in financial and reputational damage [1]. If the attack on the customer had not been detected, they too could have faced sensitive data loss and major business disruptions. This incident underscores the critical importance of robust security measures and vigilant monitoring to protect against sophisticated cyber threats.

Credit to Rajendra Rushanth (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

Appendices

Darktrace Model Detections

  • Device / Unusual LDAP Bind and Search Activity
  • Device / Attack and Recon Tools
  • Device / Network Range Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / UDP Enumeration
  • Device / Large Number of Model Breaches
  • Device / Network Scan
  • Device / Multiple Lateral Movement Model Breaches (Enhanced Monitoring)
  • Device / Reverse DNS Sweep
  • Device / SMB Session Brute Force (Non-Admin)

List of Indicators of Compromise (IoCs)

IoC - Type – Description

/nice ports,/Trinity.txt.bak - URI – Unusual Nmap Usage

MITRE ATT&CK Mapping

Tactic – ID – Technique

INITIAL ACCESS – T1200 – Hardware Additions

DISCOVERY – T1046 – Network Service Scanning

DISCOVERY – T1482 – Domain Trust Discovery

RECONNAISSANCE – T1590 – IP Addresses

T1590.002 – DNS

T1590.005 – IP Addresses

RECONNAISSANCE – T1592 – Client Configurations

T1592.004 – Client Configurations

RECONNAISSANCE – T1595 – Scanning IP Blocks

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

References

[1] https://www.bleepingcomputer.com/news/security/securing-helpdesks-from-hackers-what-we-can-learn-from-the-mgm-breach/

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

/

October 3, 2024

/

Cloud

Introducing real-time multi-cloud detection & response powered by AI

Default blog imageDefault blog image

We are delighted to announce the general availability of Microsoft Azure support for Darktrace / CLOUD, enabling real-time cloud detection and response across dynamic multi-cloud environments. Built on Self-Learning AI, Darktrace / CLOUD leverages Microsoft’s new virtual network flow logs (VNet flow) to offer an agentless-first approach that dramatically simplifies detection and response within Azure, unifying cloud-native security with Darktrace’s innovative ActiveAI Security Platform.

As organizations increasingly adopt multi-cloud architectures, the need for advanced, real-time threat detection and response is critical to keep pace with evolving cloud threats. Security teams face significant challenges, including increased complexity, limited visibility, and siloed tools. The dynamic nature of multi-cloud environments introduces ever-changing blind spots, while traditional security tools struggle to provide real-time insights, often offering static snapshots of risk. Additionally, cloud security teams frequently operate in isolation from SOC teams, leading to fragmented visibility and delayed responses. This lack of coordination, especially in hybrid environments, hinders effective threat detection and response. Compounding these challenges, current security solutions are split between agent-based and agentless approaches, with agentless solutions often lacking real-time awareness and agent-based options adding complexity and scalability concerns. Darktrace / CLOUD helps to solve these challenges with real-time detection and response designed specifically for dynamic cloud environments like Azure and AWS.

Pioneering AI-led real-time cloud detection & response

Darktrace has been at the forefront of real-time detection and response for over a decade, continually pushing the boundaries of AI-driven cybersecurity. Our Self-Learning AI uniquely positions Darktrace with the ability to automatically understand and instantly adapt to changing cloud environments. This is critical in today’s landscape, where cloud infrastructures are highly dynamic and ever-changing.  

Built on years of market-leading network visibility, Darktrace / CLOUD understands ‘normal’ for your unique business across clouds and networks to instantly reveal known, unknown, and novel cloud threats with confidence. Darktrace Self-Learning AI continuously monitors activity across cloud assets, containers, and users, and correlates it with detailed identity and network context to rapidly detect malicious activity. Platform-native identity and network monitoring capabilities allow Darktrace / CLOUD to deeply understand normal patterns of life for every user and device, enabling instant, precise and proportionate response to abnormal behavior - without business disruption.

Leveraging platform-native Autonomous Response, AI-driven behavioral containment neutralizes malicious activity with surgical accuracy while preventing disruption to cloud infrastructure or services. As malicious behavior escalates, Darktrace correlates thousands of data points to identify and instantly respond to unusual activity by blocking specific connections and enforcing normal behavior.

Figure 1: AI-driven behavioral containment neutralizes malicious activity with surgical accuracy while preventing disruption to cloud infrastructure or services.

Unparalleled agentless visibility into Azure

As a long-term trusted partner of Microsoft, Darktrace leverages Azure VNet flow logs to provide agentless, high-fidelity visibility into cloud environments, ensuring comprehensive monitoring without disrupting workflows. By integrating seamlessly with Azure, Darktrace / CLOUD continues to push the envelope of innovation in cloud security. Our Self-learning AI not only improves the detection of traditional and novel threats, but also enhances real-time response capabilities and demonstrates our commitment to delivering cutting-edge, AI-powered multi-cloud security solutions.

  • Integration with Microsoft Virtual network flow logs for enhanced visibility
    Darktrace / CLOUD integrates seamlessly with Azure to provide agentless, high-fidelity visibility into cloud environments. VNet flow logs capture critical network traffic data, allowing Darktrace to monitor Azure workloads in real time without disrupting existing workflows. This integration significantly reduces deployment time by 95%1 and cloud security operational costs by up to 80%2 compared to traditional agent-based solutions. Organizations benefit from enhanced visibility across dynamic cloud infrastructures, scaling security measures effortlessly while minimizing blind spots, particularly in ephemeral resources or serverless functions.
  • High-fidelity agentless deployment
    Agentless deployment allows security teams to monitor and secure cloud environments without installing software agents on individual workloads. By using cloud-native APIs like AWS VPC flow logs or Azure VNet flow logs, security teams can quickly deploy and scale security measures across dynamic, multi-cloud environments without the complexity and performance overhead of agents. This approach delivers real-time insights, improving incident detection and response while reducing disruptions. For organizations, agentless visibility simplifies cloud security management, lowers operational costs, and minimizes blind spots, especially in ephemeral resources or serverless functions.
  • Real-time visibility into cloud assets and architectures
    With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures. This shared context enhances collaboration and accelerates threat detection and response, especially in complex environments like Kubernetes. Additionally, Cyber AI Analyst automates the investigation process, correlating data across networks, identities, and cloud assets to save security teams valuable time, ensuring continuous protection and efficient cloud migrations.
Figure 2: Real-time visibility into Azure assets and architectures built from network, configuration and identity and access roles.

Unified multi-cloud security at scale

As organizations increasingly adopt multi-cloud strategies, the complexity of managing security across different cloud providers introduces gaps in visibility. Darktrace / CLOUD simplifies this by offering agentless, real-time monitoring across multi-cloud environments. Building on our innovative approach to securing AWS environments, our customers can now take full advantage of robust real-time detection and response capabilities for Azure. Darktrace is one of the first vendors to leverage Microsoft’s virtual network flow logs to provide agentless deployment in Azure, enabling unparalleled visibility without the need for installing agents. In addition, Darktrace / CLOUD offers automated Cloud Security Posture Management (CSPM) that continuously assesses cloud configurations against industry standards.  Security teams can identify and prioritize misconfigurations, vulnerabilities, and policy violations in real-time. These capabilities give security teams a complete, live understanding of their cloud environments and help them focus their limited time and resources where they are needed most.

This approach offers seamless integration into existing workflows, reducing configuration efforts and enabling fast, flexible deployment across cloud environments. By extending its capabilities across multiple clouds, Darktrace / CLOUD ensures that no blind spots are left uncovered, providing holistic, multi-cloud security that scales effortlessly with your cloud infrastructure. diagrams, visualizes cloud assets, and prioritizes risks across cloud environments.

Figure 3: Unified view of AWS and Azure cloud posture and compliance over time.

The future of cloud security: Real-time defense in an unpredictable world

Darktrace / CLOUD’s support for Microsoft Azure, powered by Self-Learning AI and agentless deployment, sets a new standard in multi-cloud security. With real-time detection and autonomous response, organizations can confidently secure their Azure environments, leveraging innovation to stay ahead of the constantly evolving threat landscape. By combining Azure VNet flow logs with Darktrace’s AI-driven platform, we can provide customers with a unified, intelligent solution that transforms how security is managed across the cloud.

Learn More:

References

1. Based on internal research and customer data

2. Based on internal research

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI