Blog
/
/
February 11, 2021

Detecting IoT Threats in Control Systems

Discover how Darktrace uncovers pre-existing threats in Industrial IoT systems. Learn about advanced detection techniques in industrial control systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2021

Industrial IoT (IIoT) devices are a pressing concern for security teams. Companies invest large sums of money to keep cyber-criminals out of industrial systems, but what happens when the hacker is already inside? Gateways and legacy security tools generally sit at the border of an organization and are designed to stop external threats, but are less effective once the threat is already inside. During this period, cyber-criminals carry out further reconnaissance, tamper with PLC settings, and subtly disrupt the production process.

Darktrace recently detected a series of pre-existing infections in Industrial IoT (IIoT) devices at a manufacturing firm in the EMEA region. The organization already had Darktrace in place in one area of the environment, but after seeing how the AI could successfully detect zero-day vulnerabilities and threats, they expanded the deployment, allowing Darktrace to actively monitor and defend interactions among its 5,000 devices, and dramatically improving visibility.

An unknown emerging threat was identified by Darktrace / OT omultiple machines within hours of Darktrace being active in the environment. By casting light on this previously unknown threat, Darktrace enabled the customer to perform full incident response and threat investigation, before the attacker was able to cause any serious damage to the company.

Though it is unclear how long the devices had been infected, it is likely to have been first introduced manually via an infected USB. The affected endpoints were being used as part of a continuous production process and could not be installed with endpoint protection.

Darktrace / OT; however, easily detects infections across the digital estate, regardless of the type of environment or technology. Darktrace AI does not rely on signature-based methods but instead continuously updates its understanding of what constitutes ‘normal’ in an industrial environment. This self-learning approach allows the AI to contain zero-days that have never been seen before in the wild, as well as detecting the new appearance of pre-existing attacks.

Industrial IoT attacked

Only a few hours after Darktrace AI had begun defending the wider connections and interactions across the manufacturing firm, Darktrace detected a highly unusual network scan. A timeline of events, from first scan to full incident response results and conclusions, is shown below:

Figure 1: Timeline of incident response across 28 hours

Darktrace’s AI recognized that the device was exploiting an SMBv1 protocol in order to attempt lateral movement. In addition to anonymous SMBv1 authentication, Darktrace detected the device abusing default vendor credentials for device enumeration.

The device made a large number of unusual connections, including connections to internal endpoints which the company had previously been unaware of. As these occurred, the Threat Visualizer, Darktrace’s user interface, provided a graphical visualization of the incident, illuminating the unusual activity’s spread from the infected device across the infrastructure in question.

Figure 2: The Darktrace Threat Visualizer

Darktrace identified that the infected Industrial IoT device was making an unusually large number of internal connections, suggesting an effort to perform reconnaissance.

Darktrace’s Cyber AI Analyst launched an immediate investigation into the alert, surfacing an incident summary at machine speed with all the information the security team needed to act.

Figure 3: An example of an AI Analyst Report on a network scan

The Cyber AI Analyst further identified two other devices behaving in a similar way, and these were removed from the network by the customer in response. When investigated by the security team, these devices were shown to be infected with the Yalove and Renocide worms, and the Autoit trojan-dropper. Open source intelligence suggests these infections are often spread via removable media such as USB drives.

Using Darktrace’s Advanced Search function, the customer was able to investigate related model breaches to build a list of similar indicators of compromise (IoCs), including failed external connections to www.whatismyip[.]com and DYNDNS IP addresses on HTTP port 80.

Recurring infections: How to deal with a persistent attack

In total, Darktrace was used to identify 13 infected production devices. The customer contacted the equipment owner, whose response confirmed that they had seen similar attacks on other networks in the past, including recurring infections.

Recurring infections imply one of two things: either, that the malware has a persistence mechanism, where it uses a range of techniques to remain undetected on the exploited machine and achieve persistent access to the system. Alternatively, a recurring infection could mean that the IoT manufacturer was not able to find all infected devices when they were first alerted to the compromise, and thus did not shut down the attack in its entirety.

As the infected machines are owned by a third party, they could not be immediately remediated. Darktrace AI, however, contained this threat with minimal business disruption. The customer was able to leave the infected devices active, which were still needed for production, confident that Darktrace would alert them if the infection spread or changed in behavior.

Industrial IoT: Shining a light on pre-existing threats

The mass adoption of Industrial IoT devices has made industrial environments more complex and more vulnerable than ever. This blog demonstrates the prevalent threat that attackers are already on the inside, and the importance for security teams to expand visibility over their full industrial system. In this case, the customer was able to use Darktrace’s AI to illuminate a previous blind spot and contain a persistent attack, while minimizing disruption to operations. Crucially, this ‘unknown known’ threat was detected without any prior knowledge of the devices, their supplier, or patch history, and without using malware signatures or IoCs.

The customer was made aware of the infection via the Darktrace SOC service. Yet the same outcome could have been obtained with other workflows provided by Darktrace, such as email alerting, notifications through the Darktrace mobile app, seamlessly integrating Darktrace with a SIEM solution, or alerting via an internal SOC.

Cyber AI Analyst enabled the customer to perform immediate incident response. While waiting for a reinstallation date with the equipment owner, the customer could keep the production devices online, knowing Darktrace would be monitoring the outstanding risk. In an industrial setting, trade-offs like this are often necessary to sustain production. Darktrace helps organizations maintain the vigilance they need to do this securely, and when remediation does become possible, Darktrace can be used to reliably locate the full extent of the infection.

Thanks to Darktrace analyst Oakley Cox for his insights on the above threat find.

Darktrace model detections:

  • Device / Suspicious Network Scan Activity [Enhanced Monitoring]
  • Device / ICMP Address Scan
  • ICS / Anomalous IT to ICS Connection
  • Anomalous Connection / SMB Enumeration
  • Device / Network Scan

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

Proactive Security

/

July 1, 2025

Pre-CVE Threat Detection: 8 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Can you detect cyber threats before the world knows about them?

Every year, tens of thousands of Common Vulnerabilities and Exposures (CVEs) are disclosed, over 40,000 in 2024 alone [1], and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST).

However, cybercriminals don't wait for disclosure. They exploit zero-days while defenders remain in the dark.

Traditional, signature-based tools struggle to detect these early-stage threats. That’s why anomaly detection is becoming essential for organizations seeking pre-CVE detection.

Understanding the gap between zero-day attacks and public CVE disclosure

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

The gap between exploitation of a zero-day and the disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

However, abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems.

Detecting threats without relying on CVE disclosure

Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are eight examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

The attack vs. patch race

In many cases, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender.

Skilled nation-state actors

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security.

After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Examples of exploitation

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

You spotted the anomaly but did you stop the breach?

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Realted Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

June 27, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

login on laptop dual factor authenticationDefault blog imageDefault blog image

What is Blind Eagle?

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombian organizations.

Blind Eagle characteristically targets government institutions, financial organizations, and critical infrastructure [1][2].

Attacks carried out by Blind Eagle actors typically start with a phishing email and the group have been observed utilizing various Remote Access Trojans (RAT) variants, which often have in-built methods for hiding command-and-control (C2) traffic from detection [3].

What we know about Blind Eagle from a recent campaign

Since November 2024, Blind Eagle actors have been conducting an ongoing campaign targeting Colombian organizations [1].

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

Despite Microsoft patching this vulnerability in November 2024 [1][4], Blind Eagle actors have continued to exploit the minimal interaction mechanism, though no longer with the intent of harvesting NTLMv2 password hashes. Instead, phishing emails are sent to targets containing a malicious URL which, when clicked, initiates the download of a malicious file. This file is then triggered by minimal user interaction.

Clicking on the file triggers a WebDAV request, with a connection being made over HTTP port 80 using the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19044’. WebDAV is a transmission protocol which allows files or complete directories to be made available through the internet, and to be transmitted to devices [5]. The next stage payload is then downloaded via another WebDAV request and malware is executed on the target device.

Attackers are notified when a recipient downloads the malicious files they send, providing an insight into potential targets [1].

Darktrace’s coverage of Blind Eagle

In late February 2025, Darktrace observed activity assessed with medium confidence to be  associated with Blind Eagle on the network of a customer in Colombia.

Within a period of just five hours, Darktrace / NETWORK detected a device being redirected through a rare external location, downloading multiple executable files, and ultimately exfiltrating data from the customer’s environment.

Since the customer did not have Darktrace’s Autonomous Response capability enabled on their network, no actions were taken to contain the compromise, allowing it to escalate until the customer’s security team responded to the alerts provided by Darktrace.

Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany. Multiple open-source intelligence (OSINT) providers have since linked this endpoint with phishing and malware campaigns [9].

The device then proceeded to download the executable file hxxp://62[.]60[.]226[.]112/file/3601_2042.exe.

Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Figure 1: Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.
Figure 2: Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.

The device was then observed making unusual connections to the rare endpoint 21ene.ip-ddns[.]com and performing unusual external data activity.

This dynamic DNS endpoint allows a device to access an endpoint using a domain name in place of a changing IP address. Dynamic DNS services ensure the DNS record of a domain name is automatically updated when the IP address changes. As such, malicious actors can use these services and endpoints to dynamically establish connections to C2 infrastructure [6].

Further investigation into this dynamic endpoint using OSINT revealed multiple associations with previous likely Blind Eagle compromises, as well as Remcos malware, a RAT commonly deployed via phishing campaigns [7][8][10].

Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.
Figure 3: Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.

Shortly after this, Darktrace observed the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19045’, indicating usage of the aforementioned transmission protocol WebDAV. The device was subsequently observed connected to an endpoint associated with Github and downloading data, suggesting that the device was retrieving a malicious tool or payload. The device then began to communicate to the malicious endpoint diciembrenotasenclub[.]longmusic[.]com over the new TCP port 1512 [11].

Around this time, the device was also observed uploading data to the endpoints 21ene.ip-ddns[.]com and diciembrenotasenclub[.]longmusic[.]com, with transfers of 60 MiB and 5.6 MiB observed respectively.

Figure 4: UI graph showing external data transfer activity.

This chain of activity triggered an Enhanced Monitoring model alert in Darktrace / NETWORK. These high-priority model alerts are designed to trigger in response to higher fidelity indicators of compromise (IoCs), suggesting that a device is performing activity consistent with a compromise.

 Darktrace’s detection of initial attack chain activity.
Figure 5: Darktrace’s detection of initial attack chain activity.

A second Enhanced Monitoring model was also triggered by this device following the download of the aforementioned executable file (hxxp://62[.]60[.]226[.]112/file/3601_2042.exe) and the observed increase in C2 activity.

Following this activity, Darktrace continued to observe the device beaconing to the 21ene.ip-ddns[.]com endpoint.

Darktrace’s Cyber AI Analyst was able to correlate each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 6: Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 7: Cyber AI Analyst’s detection of the affected device’s broader connectivity throughout the course of the attack.

As the affected customer did not have Darktrace’s Autonomous Response configured at the time, the attack was able to progress unabated. Had Darktrace been properly enabled, it would have been able to take a number of actions to halt the escalation of the attack.

For example, the unusual beaconing connections and the download of an unexpected file from an uncommon location would have been shut down by blocking the device from making external connections to the relevant destinations.

Conclusion

The persistence of Blind Eagle and ability to adapt its tactics, even after patches were released, and the speed at which the group were able to continue using pre-established TTPs highlights that timely vulnerability management and patch application, while essential, is not a standalone defense.

Organizations must adopt security solutions that use anomaly-based detection to identify emerging and adapting threats by recognizing deviations in user or device behavior that may indicate malicious activity. Complementing this with an autonomous decision maker that can identify, connect, and contain compromise-like activity is crucial for safeguarding organizational networks against constantly evolving and sophisticated threat actors.

Credit to Charlotte Thompson (Senior Cyber Analyst), Eugene Chua (Principal Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

IoCs

IoC – Type - Confidence
Microsoft-WebDAV-MiniRedir/10.0.19045 – User Agent

62[.]60[.]226[.]112 – IP – Medium Confidence

hxxp://62[.]60[.]226[.]112/file/3601_2042.exe – Payload Download – Medium Confidence

21ene.ip-ddns[.]com – Dynamic DNS Endpoint – Medium Confidence

diciembrenotasenclub[.]longmusic[.]com  - Hostname – Medium Confidence

Darktrace’s model alert coverage

Anomalous File / Suspicious HTTP Redirect
Anomalous File / EXE from Rare External Location
Anomalous File / Multiple EXE from Rare External Location
Anomalous Server Activity / Outgoing from Server
Unusual Activity / Unusual External Data to New Endpoint
Device / Anomalous Github Download
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Initial Attack Chain Activity
Anomalous Server Activity / Rare External from Server
Compromise / Suspicious File and C2
Compromise / Fast Beaconing to DGA
Compromise / Large Number of Suspicious Failed Connections
Device / Large Number of Model Alert

Mitre Attack Mapping:

Tactic – Technique – Technique Name

Initial Access - T1189 – Drive-by Compromise
Initial Access - T1190 – Exploit Public-Facing Application
Initial Access ICS - T0862 – Supply Chain Compromise
Initial Access ICS - T0865 – Spearphishing Attachment
Initial Access ICS - T0817 - Drive-by Compromise
Resource Development - T1588.001 – Malware
Lateral Movement ICS - T0843 – Program Download
Command and Control - T1105 - Ingress Tool Transfer
Command and Control - T1095 – Non-Application Layer Protocol
Command and Control - T1571 – Non-Standard Port
Command and Control - T1568.002 – Domain Generation Algorithms
Command and Control ICS - T0869 – Standard Application Layer Protocol
Evasion ICS - T0849 – Masquerading
Exfiltration - T1041 – Exfiltration Over C2 Channel
Exfiltration - T1567.002 – Exfiltration to Cloud Storage

References

1)    https://research.checkpoint.com/2025/blind-eagle-and-justice-for-all/

2)    https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/04/kpmg-ctip-blind-eagle-01-apr-2025.pdf.coredownload.inline.pdf

3)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-remote-access-trojan/#:~:text=They%20might%20be%20attached%20to,remote%20access%20or%20system%20administration

4)    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-43451

5)    https://www.ionos.co.uk/digitalguide/server/know-how/webdav/

6)    https://vercara.digicert.com/resources/dynamic-dns-resolution-as-an-obfuscation-technique

7)    https://threatfox.abuse.ch/ioc/1437795

8)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/remcos-malware/

9)    https://www.virustotal.com/gui/url/b3189db6ddc578005cb6986f86e9680e7f71fe69f87f9498fa77ed7b1285e268

10) https://www.virustotal.com/gui/domain/21ene.ip-ddns.com

11) https://www.virustotal.com/gui/domain/diciembrenotasenclub.longmusic.com/community

Continue reading
About the author
Charlotte Thompson
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI