Blog
/
AI
/
November 9, 2023

Using Darktrace for Threat Hunting

Read about effective threat hunting techniques with Darktrace, focusing on identifying vulnerabilities and improving your security measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Nov 2023

What is Threat Hunting?

Threat Hunting is a technique to identify adversaries within an organization that go undetected by traditional security tools.

While a traditional, reactive approach to cyber security often involves automated alerts received and investigated by a security team, threat hunting takes a proactive approach to seek out potential threats and vulnerabilities before they escalate into full-blown security incidents. The benefits of hunting include identifying hidden threats, reducing the dwell time of attackers, and enhancing overall detection and response capabilities.

Threat Hunting Methodology

There are many different methodologies and frameworks for threat hunting, including the Pyramid of Pain, the Sqrrl Hunting Loop, and the MITRE ATT&CK Framework.  While there is not one gold standard on how to conduct threat hunts, the typical process can be broken down into several key steps:

Planning and Hypothesis Creation: Define the scope and objective of the threat hunt. Identify potential targets and predict activity that might be taking place.

Data Collection: Refining data collection methods and gathering data from various sources, including logs, network traffic, and endpoint data.

Data Processing: Data that has been collected needs to be processed to generate information.

Data Analysis: Processed data can then be analyzed for anomalies, indicators of compromise (IoCs), or patterns of suspicious behavior.

Threat Identification: Based on the analysis, threat hunters may identify potential threats or security incidents.

Response: Taking action to mitigate or eradicate identified threats if any.

Documentation and Dissemination: It is important to record any findings or actions taken during the threat hunting process to serve as lessons learned for future reference. Additionally, any new threats or tactics, techniques, and procedures (TTPs) discovered may be shared with the cyber threat intelligence team or the wider community.

Building a Threat Hunting Program

For organizations looking to implement threat hunting as part of their cyber security program, they will need both a data collection source and human analysts as threat hunters.

Data collection and analysis may often be performed through existing security tools including SIEM systems, Network Traffic Analysis tools, endpoint agents, and system logs. On the human side, experienced threat hunters may be hired into an organization, or existing SOC analysts may be upskilled to perform threat hunts.

Leveraging AI security tools such as Darktrace can help to lower the bar in building a threat hunting program, both in analysis of the data and in assisting humans in their investigations.

Threat Hunting in Darktrace

To illustrate the benefits of leveraging Darktrace in threat hunting, we can walk through an example hunt following the key steps outlined above.

Planning and Hypothesis Creation

The initial hypothesis used in defining the scope of a threat hunt can come from several sources: threat intelligence feeds, the threat hunter’s own experience, or an anomaly detection that has been highlighted by Darktrace.

In this case, let’s imagine that this hunt is focused on a recent campaign by an Advanced Persistent Threat (APT). Threat intel has provided known file hashes, Command and Control (C2) IP addresses and domains, and MITRE techniques used by the attacker. The goal is to determine whether any indicators of this threat are present in the organization’s environment.

Data Collection and Data Processing

Darktrace can be deployed to cover an organization’s entire digital estate, including passive network traffic monitoring, cloud environments, and SaaS applications. Self-Learning AI is applied to the raw data to learn normal patterns of life for a specific environment and to highlight deviations from normal that might represent a threat. This data gives threat hunters a starting point in analyzing logs, meta-data, and anomaly detections.

Data Analysis

In the data analysis phase, threat hunters can use the Darktrace platform to search for the IoCs and TTPs identified during planning.

When searching for IoCs such as IP addresses or domain names, hunters can query the environment through the Omnisearch bar in the Darktrace Threat Visualizer. This search can provide a summary of all devices or users contacting a suspicious endpoint. From here the hunters can quickly pivot to identify surrounding activity from the source device.

Figure 1: Search for twitter[.]com (now known as X) as a potential indicator of compromise

Alternately, Darktrace Advanced Search can be used to search for these IoCs, but it also supports queries for file hashes or more advanced searches based on ports, protocols, data volumes, etc.

Figure 2: Advanced Search query for connections on port 3389 lasting longer than 60 seconds

While searching for known suspicious domains and IP addresses is straightforward, the real strength of Darktrace lies in the ability to highlight deviations from a device’s ‘normal’ pattern of life. Darktrace has many built-in behavioral models designed to detect common adversary TTPs, all mapped to the MITRE ATT&CK Framework.

In the context of our threat hunt, we know that our target APT uses the Remote Desktop Protocol (RDP) to move laterally within a compromised network, specifically leveraging MITRE technique T1021.001. As each Darktrace model is mapped to MITRE, the threat hunter can search and find specific detection models that may be of interest, in this case the model ‘Anomalous Connection / Unusual Internal Remote Desktop’. From here they can view any devices that may have triggered this model, indicating possible attacker activity.

Figure 3: MITRE Mapping details in the Darktrace Model Editor

Threat hunters can also search more widely for any detections within a specific MITRE tactic through filters found on the Darktrace Threat Tray.

Figure 4: Search for the Lateral Movement MITRE Tactic on the model breach threat tray

Threat Identification

Once a threat hunter has identified connections, model breaches, or anomalies during the analysis phase, they can begin to conduct further investigation to determine if this may represent a security incident.

Threat hunters can use Darktrace to perform deeper analysis through generating packet captures, visualizing surrounding network traffic, and utilizing features like the VirusTotal lookup to consult open-source intelligence (OSINT).

Another powerful tool to augment the hunter’s investigation is the Darktrace Cyber AI Analyst, which assists human teams in the investigation and correlation of behaviors to identify threats. Cyber AI Analyst automatically launches an initial triage of every model breach in the Darktrace platform, but threat hunters can also leverage manual investigations to gain additional context on their findings.

For example, say that an unusual RDP connection of interest was identified through Advanced Search. The hunter can pivot back to the Threat Visualizer and launch an AI Analyst investigation for the source device at the time of the connection. The resulting investigation may provide the hunter with additional suspicious behavior observed around that time, without the need for manual log analysis.

Figure 5: Manual Cyber AI Analyst investigations

Response

If a threat is detected within Darktrace and confirmed by the threat hunter, Darktrace's Autonomous Response can be leveraged to take either autonomous or manual action to contain the threat. This provides the security team with additional time to conduct further investigation, pull forensics, and remediate the threat. This process can be further supported through the bespoke, AI-generated playbooks offered by Darktrace / Incident Readiness & Recovery, allowing an efficient recovery back to normal.

Figure 6: Example of a manual RESPOND action used to block suspicious connectivity on port 3389 to contain possible lateral movement

Documentation and Dissemination

An important final step is to document the threat hunting process and use the results to better improve automated security alerting and response. In Darktrace, reporting can be generated through the Cyber AI Analyst, Advanced Search exports, and model breach details to support documentation.

To improve existing alerting through Darktrace, this may mean creating a new detection model or increasing the priority of existing detections to ensure that these are escalated to the security team in the future. The Darktrace model editor provides users with full visibility into models and allows the creation of custom detections based on use cases or business requirements.

Figure 7: The Darktrace Model Editor showing the Breach Logic configuration

Conclusions

Proactive threat hunting is an important part of a cyber security approach to identify hidden threats, reduce dwell time, and improve incident response. Darktrace’s Self-Learning AI provides a powerful tool for identifying attacker TTPs and augmenting human threat hunters in their process. Utilizing the Darktrace platform, threat hunters can significantly reduce the time required to complete their hunts and mitigate identified threats.

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

  • Identity-based attacks: How attackers are bypassing traditional defenses
  • Zero-day exploitation: The rise of previously unknown vulnerabilities
  • AI-driven threats: How adversaries are leveraging AI to outmaneuver security controls

Stay ahead of evolving threats with expert analysis from Darktrace. Download the report here.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

/

May 16, 2025

Catching a RAT: How Darktrace neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

  • Real-time Detection Models
       
    • Compromise / Suspicious SSL Activity
    •  
    • Compromise / Beaconing Activity To      External Rare
    •  
    • Compromise / High Volume of      Connections with Beacon Score
    •  
    • Anomalous Connection / Suspicious      Self-Signed SSL
    •  
    • Compromise / Sustained SSL or HTTP      Increase
    •  
    • Compromise / SSL Beaconing to Rare      Destination
    •  
    • Compromise / Suspicious Beaconing      Behaviour
    •  
    • Compromise / Large Number of      Suspicious Failed Connections
  •  
  • Autonomous     Response Models
       
    • Antigena / Network / Significant      Anomaly / Antigena Controlled and Model Alert
    •  
    • Antigena / Network / Significant      Anomaly / Antigena Enhanced Monitoring from Client Block

List of IoCs

·     185.49.126[.]50 - IP – AsyncRAT C2 Endpoint

·     195.26.255[.]81 – IP - AsyncRAT C2 Endpoint

·      191.96.207[.]246 – IP – Likely AsyncRAT C2 Endpoint

·     CN=AsyncRAT Server - SSL certificate - AsyncRATC2 Infrastructure

·      Kashuub[.]com– Hostname – Likely AsyncRAT C2 Endpoint

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique  

 

Execution– T1053 - Scheduled Task/Job: Scheduled Task

DefenceEvasion – T1497 - Virtualization/Sandbox Evasion: System Checks

Discovery– T1057 – Process Discovery

Discovery– T1082 – System Information Discovery

LateralMovement - T1021.001 - Remote Services: Remote Desktop Protocol

Collection/ Credential Access – T1056 – Input Capture: Keylogging

Collection– T1125 – Video Capture

Commandand Control – T1105 - Ingress Tool Transfer

Commandand Control – T1219 - Remote Access Software

Exfiltration– T1041 - Exfiltration Over C2 Channel

 

References

[1]  https://blog.talosintelligence.com/operation-layover-how-we-tracked-attack/

[2] https://intel471.com/blog/china-cybercrime-undergrond-deepmix-tea-horse-road-great-firewall

[3] https://www.attackiq.com/2024/08/01/emulate-asyncrat/

[4] https://www.fortinet.com/blog/threat-research/spear-phishing-campaign-with-new-techniques-aimed-at-aviation-companies

[5] https://www.virustotal.com/gui/ip-address/185.49.126[.]50/community

[6] https://dfir.ch/posts/asyncrat_quasarrat/

[7] https://www.virustotal.com/gui/ip-address/195.26.255[.]81

[8] https://www.speedguide.net/port.php?port=8041

[9] https://www.esentire.com/blog/exploring-the-infection-chain-screenconnects-link-to-asyncrat-deployment

[10] https://scammer.info/t/taking-out-connectwise-sites/153479/518?page=26

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

/

May 13, 2025

Revolutionizing OT Risk Prioritization with Darktrace 6.3

man in hard hat on tabletDefault blog imageDefault blog image

Powering smarter protection for industrial systems

In industrial environments, security challenges are deeply operational. Whether you’re running a manufacturing line, a power grid, or a semiconductor fabrication facility (fab), you need to know: What risks can truly disrupt my operations, and what should I focus on first?

Teams need the right tools to shift from reactive defense, constantly putting out fires, to proactively thinking about their security posture. However, most OT teams are stuck using IT-centric tools that don’t speak the language of industrial systems, are consistently overwhelmed with static CVE lists, and offer no understanding of OT-specific protocols. The result? Compliance gaps, siloed insights, and risk models that don’t reflect real-world exposure, making risk prioritization seem like a luxury.

Darktrace / OT 6.3 was built in direct response to these challenges. Developed in close collaboration with OT operators and engineers, this release introduces powerful upgrades that deliver the context, visibility, and automation security teams need, without adding complexity. It’s everything OT defenders need to protect critical operations in one platform that understands the language of industrial systems.

additions to darktrace / ot 6/3

Contextual risk modeling with smarter Risk Scoring

Darktrace / OT 6.3 introduces major upgrades to OT Risk Management, helping teams move beyond generic CVE lists with AI-driven risk scoring and attack path modeling.

By factoring in real-world exploitability, asset criticality, and operational context, this release delivers a more accurate view of what truly puts critical systems at risk.

The platform now integrates:

  • CISA’s Known Exploited Vulnerabilities (KEV) database
  • End-of-life status for legacy OT devices
  • Firewall misconfiguration analysis
  • Incident response plan alignment

Most OT environments are flooded with vulnerability data that lacks context. CVE scores often misrepresent risk by ignoring how threats move through the environment or whether assets are even reachable. Firewalls are frequently misconfigured or undocumented, and EOL (End of Life) devices, some of the most vulnerable, often go untracked.

Legacy tools treat these inputs in isolation. Darktrace unifies them, showing teams exactly which attack paths adversaries could exploit, mapped to the MITRE ATT&CK framework, with visibility into where legacy tech increases exposure.

The result: teams can finally focus on the risks that matter most to uptime, safety, and resilience without wasting resources on noise.

Automating compliance with dynamic IEC-62443 reporting

Darktrace / OT now includes a purpose-built IEC-62443-3-3 compliance module, giving industrial teams real-time visibility into their alignment with regulatory standards. No spreadsheets required!

Industrial environments are among the most heavily regulated. However, for many OT teams, staying compliant is still a manual, time-consuming process.

Darktrace / OT introduces a dedicated IEC-62443-3-3 module designed specifically for industrial environments. Security and operations teams can now map their security posture to IEC standards in real time, directly within the platform. The module automatically gathers evidence across all four security levels, flags non-compliance, and generates structured reports to support audit preparation, all in just a few clicks.Most organizations rely on spreadsheets or static tools to track compliance, without clear visibility into which controls meet standards like IEC-62443. The result is hidden gaps, resource-heavy audits, and slow remediation cycles.

Even dedicated compliance tools are often built for IT, require complex setup, and overlook the unique devices found in OT environments. This leaves teams stuck with fragmented reporting and limited assurance that their controls are actually aligned with regulatory expectations.

By automating compliance tracking, surfacing what matters most, and being purpose built for industrial environments, Darktrace / OT empowers organizations to reduce audit fatigue, eliminate blind spots, and focus resources where they’re needed most.

Expanding protocol visibility with deep insights for specialized OT operations

Darktrace has expanded its Deep Packet Inspection (DPI) capabilities to support five industry-specific protocols, across healthcare, semiconductor manufacturing, and ABB control systems.

The new protocols build on existing capabilities across all OT industry verticals and protocol types to ensure the Darktrace Self-Learning AI TM can learn intelligently about even more assets in complex industrial environments. By enabling native, AI-driven inspection of these protocols, Darktrace can identify both security threats and operational issues without relying on additional appliances or complex integrations.

Most security platforms lack native support for industry-specific protocols, creating critical visibility gaps in customer environments like healthcare, semiconductor manufacturing, and ABB-heavy industrial automation. Without deep protocol awareness, organizations struggle to accurately identify specialized OT and IoT assets, detect malicious activity concealed within proprietary protocol traffic, and generate reliable device risk profiles due to insufficient telemetry.

These blind spots result in incomplete asset inventories, and ultimately, flawed risk posture assessments which over-index for CVE patching and legacy equipment.

By combining protocol-aware detection with full-stack visibility across IT, OT, and IoT, Darktrace’s AI can correlate anomalies across domains. For example, connecting an anomaly from a Medical IoT (MIoT) device with suspicious behavior in IT systems, providing actionable, contextual insights other solutions often miss.

Conclusion

Together, these capabilities take OT security beyond alert noise and basic CVE matching, delivering continuous compliance, protocol-aware visibility, and actionable, prioritized risk insights, all inside a single, unified platform built for the realities of industrial environments.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI