Blog
/
AI
/
November 9, 2023

Using Darktrace for Threat Hunting

Read about effective threat hunting techniques with Darktrace, focusing on identifying vulnerabilities and improving your security measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Nov 2023

What is Threat Hunting?

Threat Hunting is a technique to identify adversaries within an organization that go undetected by traditional security tools.

While a traditional, reactive approach to cyber security often involves automated alerts received and investigated by a security team, threat hunting takes a proactive approach to seek out potential threats and vulnerabilities before they escalate into full-blown security incidents. The benefits of hunting include identifying hidden threats, reducing the dwell time of attackers, and enhancing overall detection and response capabilities.

Threat Hunting Methodology

There are many different methodologies and frameworks for threat hunting, including the Pyramid of Pain, the Sqrrl Hunting Loop, and the MITRE ATT&CK Framework.  While there is not one gold standard on how to conduct threat hunts, the typical process can be broken down into several key steps:

Planning and Hypothesis Creation: Define the scope and objective of the threat hunt. Identify potential targets and predict activity that might be taking place.

Data Collection: Refining data collection methods and gathering data from various sources, including logs, network traffic, and endpoint data.

Data Processing: Data that has been collected needs to be processed to generate information.

Data Analysis: Processed data can then be analyzed for anomalies, indicators of compromise (IoCs), or patterns of suspicious behavior.

Threat Identification: Based on the analysis, threat hunters may identify potential threats or security incidents.

Response: Taking action to mitigate or eradicate identified threats if any.

Documentation and Dissemination: It is important to record any findings or actions taken during the threat hunting process to serve as lessons learned for future reference. Additionally, any new threats or tactics, techniques, and procedures (TTPs) discovered may be shared with the cyber threat intelligence team or the wider community.

Building a Threat Hunting Program

For organizations looking to implement threat hunting as part of their cyber security program, they will need both a data collection source and human analysts as threat hunters.

Data collection and analysis may often be performed through existing security tools including SIEM systems, Network Traffic Analysis tools, endpoint agents, and system logs. On the human side, experienced threat hunters may be hired into an organization, or existing SOC analysts may be upskilled to perform threat hunts.

Leveraging AI security tools such as Darktrace can help to lower the bar in building a threat hunting program, both in analysis of the data and in assisting humans in their investigations.

Threat Hunting in Darktrace

To illustrate the benefits of leveraging Darktrace in threat hunting, we can walk through an example hunt following the key steps outlined above.

Planning and Hypothesis Creation

The initial hypothesis used in defining the scope of a threat hunt can come from several sources: threat intelligence feeds, the threat hunter’s own experience, or an anomaly detection that has been highlighted by Darktrace.

In this case, let’s imagine that this hunt is focused on a recent campaign by an Advanced Persistent Threat (APT). Threat intel has provided known file hashes, Command and Control (C2) IP addresses and domains, and MITRE techniques used by the attacker. The goal is to determine whether any indicators of this threat are present in the organization’s environment.

Data Collection and Data Processing

Darktrace can be deployed to cover an organization’s entire digital estate, including passive network traffic monitoring, cloud environments, and SaaS applications. Self-Learning AI is applied to the raw data to learn normal patterns of life for a specific environment and to highlight deviations from normal that might represent a threat. This data gives threat hunters a starting point in analyzing logs, meta-data, and anomaly detections.

Data Analysis

In the data analysis phase, threat hunters can use the Darktrace platform to search for the IoCs and TTPs identified during planning.

When searching for IoCs such as IP addresses or domain names, hunters can query the environment through the Omnisearch bar in the Darktrace Threat Visualizer. This search can provide a summary of all devices or users contacting a suspicious endpoint. From here the hunters can quickly pivot to identify surrounding activity from the source device.

Figure 1: Search for twitter[.]com (now known as X) as a potential indicator of compromise

Alternately, Darktrace Advanced Search can be used to search for these IoCs, but it also supports queries for file hashes or more advanced searches based on ports, protocols, data volumes, etc.

Figure 2: Advanced Search query for connections on port 3389 lasting longer than 60 seconds

While searching for known suspicious domains and IP addresses is straightforward, the real strength of Darktrace lies in the ability to highlight deviations from a device’s ‘normal’ pattern of life. Darktrace has many built-in behavioral models designed to detect common adversary TTPs, all mapped to the MITRE ATT&CK Framework.

In the context of our threat hunt, we know that our target APT uses the Remote Desktop Protocol (RDP) to move laterally within a compromised network, specifically leveraging MITRE technique T1021.001. As each Darktrace model is mapped to MITRE, the threat hunter can search and find specific detection models that may be of interest, in this case the model ‘Anomalous Connection / Unusual Internal Remote Desktop’. From here they can view any devices that may have triggered this model, indicating possible attacker activity.

Figure 3: MITRE Mapping details in the Darktrace Model Editor

Threat hunters can also search more widely for any detections within a specific MITRE tactic through filters found on the Darktrace Threat Tray.

Figure 4: Search for the Lateral Movement MITRE Tactic on the model breach threat tray

Threat Identification

Once a threat hunter has identified connections, model breaches, or anomalies during the analysis phase, they can begin to conduct further investigation to determine if this may represent a security incident.

Threat hunters can use Darktrace to perform deeper analysis through generating packet captures, visualizing surrounding network traffic, and utilizing features like the VirusTotal lookup to consult open-source intelligence (OSINT).

Another powerful tool to augment the hunter’s investigation is the Darktrace Cyber AI Analyst, which assists human teams in the investigation and correlation of behaviors to identify threats. Cyber AI Analyst automatically launches an initial triage of every model breach in the Darktrace platform, but threat hunters can also leverage manual investigations to gain additional context on their findings.

For example, say that an unusual RDP connection of interest was identified through Advanced Search. The hunter can pivot back to the Threat Visualizer and launch an AI Analyst investigation for the source device at the time of the connection. The resulting investigation may provide the hunter with additional suspicious behavior observed around that time, without the need for manual log analysis.

Figure 5: Manual Cyber AI Analyst investigations

Response

If a threat is detected within Darktrace and confirmed by the threat hunter, Darktrace's Autonomous Response can be leveraged to take either autonomous or manual action to contain the threat. This provides the security team with additional time to conduct further investigation, pull forensics, and remediate the threat. This process can be further supported through the bespoke, AI-generated playbooks offered by Darktrace / Incident Readiness & Recovery, allowing an efficient recovery back to normal.

Figure 6: Example of a manual RESPOND action used to block suspicious connectivity on port 3389 to contain possible lateral movement

Documentation and Dissemination

An important final step is to document the threat hunting process and use the results to better improve automated security alerting and response. In Darktrace, reporting can be generated through the Cyber AI Analyst, Advanced Search exports, and model breach details to support documentation.

To improve existing alerting through Darktrace, this may mean creating a new detection model or increasing the priority of existing detections to ensure that these are escalated to the security team in the future. The Darktrace model editor provides users with full visibility into models and allows the creation of custom detections based on use cases or business requirements.

Figure 7: The Darktrace Model Editor showing the Breach Logic configuration

Conclusions

Proactive threat hunting is an important part of a cyber security approach to identify hidden threats, reduce dwell time, and improve incident response. Darktrace’s Self-Learning AI provides a powerful tool for identifying attacker TTPs and augmenting human threat hunters in their process. Utilizing the Darktrace platform, threat hunters can significantly reduce the time required to complete their hunts and mitigate identified threats.

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

  • Identity-based attacks: How attackers are bypassing traditional defenses
  • Zero-day exploitation: The rise of previously unknown vulnerabilities
  • AI-driven threats: How adversaries are leveraging AI to outmaneuver security controls

Stay ahead of evolving threats with expert analysis from Darktrace. Download the report here.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI