Blog
/
Network
/
March 19, 2024

Pikabot Malware: Insights, Impact, & Attack Analysis

Learn about Pikabot malware and its rapid evolution in the wild, impacting organizations and how to defend against this growing threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Mar 2024

How does Loader Malware work?

Throughout 2023, the Darktrace Threat Research team identified and investigated multiple strains of loader malware affecting customers across its fleet. These malicious programs typically serve as a gateway for threat actors to gain initial access to an organization’s network, paving the way for subsequent attacks, including additional malware infections or disruptive ransomware attacks.

How to defend against loader malware

The prevalence of such initial access threats highlights the need for organizations to defend against multi-phase compromises, where modular malware swiftly progresses from one stage of an attack to the next. One notable example observed in 2023 was Pikabot, a versatile loader malware used for initial access and often accompanied by secondary compromises like Cobalt Strike and Black Basta ransomware.

While Darktrace initially investigated multiple instances of campaign-like activity associated with Pikabot during the summer of 2023, a new campaign emerged in October which was observed targeting a Darktrace customer in Europe. Thanks to the timely detection by Darktrace DETECT™ and the support of Darktrace’s Security Operations Center (SOC), the Pikabot compromise was quickly shut down before it could escalate into a more disruptive attack.

What is Pikabot?

Pikabot is one of the latest modular loader malware strains that has been active since the first half of 2023, with several evolutions in its methodology observed in the months since. Initial researchers noted similarities to the Qakbot aka Qbot or Pinkslipbot and Mantanbuchus malware families, and while Pikabot appears to be a new malware in early development, it shares multiple commonalities with Qakbot [1].

First, both Pikabot and Qakbot have similar distribution methods, can be used for multi-stage attacks, and are often accompanied by downloads of Cobalt Strike and other malware strains. The threat actor known as TA577, which has also been referred to as Water Curupira, has been seen to use both types of malware in spam campaigns which can lead to Black Basta ransomware attacks [2] [3].Notably, a rise in Pikabot campaigns were observed in September and October 2023, shortly after the takedown of Qakbot in Operation Duck Hunt, suggesting that Pikabot may be serving as a replacement for initial access to target network [4].

How does Pikabot malware work?

Many Pikabot infections start with a malicious email, particularly using email thread hijacking; however, other cases have been distributed via malspam and malvertising [5]. Once downloaded, Pikabot runs anti-analysis techniques and checks the system’s language, self-terminating if the language matches that of a Commonwealth of Independent States (CIS) country, such as Russian or Ukrainian. It will then gather key information to send to a command-and-control (C2) server, at which point additional payload downloads may be observed [2]. Early response to a Pikabot infection is important for organizations to prevent escalation to a significant compromise such as ransomware.

Darktrace’s Coverage of Pikabot malware

Between April and July 2023, the Darktrace Threat Research team investigated Pikabot infections affected more than 15 customer environments; these attacks primarily targeted US and European organizations spanning multiple industries, and most followed the below lifecycle:

  1. Initial access via malspam or email, often outside of Darktrace’s scope
  2. Suspicious executable download from a URI in the format /\/[a-z0-9A-Z]{3,}\/[a-z0-9A-Z]{5,}/ and using a Windows PowerShell user agent
  3. C2 connections to IP addresses on uncommon ports including 1194 and 2078
  4. Some cases involved further C2 activity to Cobalt Strike endpoints

In October 2023, a second campaign emerged that largely followed the same attack pattern, with a notable difference that cURL was used for the initial payload download as opposed to PowerShell. All the Pikabot cases that Darktrace has observed since October 2023 have used cURL, which could indicate a shift in approach from targeting Windows devices to multi-operating system environments.

Figure 1: Timeline of the Pikabot infection over a 2-hour period.

On October 17, 2023, Darktrace observed a Pikabot infection on the network of a European customer after an internal user seemingly clicked a malicious link in a phishing email, thereby compromising their device. As the customer did not have Darktrace/Email™ deployed on their network, Darktrace did not have visibility over the email. Despite this, DETECT was still able to provide full visibility over the network-based activity that ensued.

Darktrace observed the device using a cURL user agent when initiating the download of an unusual executable (.exe) file from an IP address that had never previously been observed on the network. Darktrace further recognized that the executable file was attempting to masquerade as a different file type, likely to evade the detection of security teams and their security tools. Within one minute, the device began to communicate with additional unusual IP addresses on uncommon ports (185.106.94[.]174:5000 and 80.85.140[.]152:5938), both of which have been noted by open-source intelligence (OSINT) vendors as Pikabot C2 servers [6] [7].

Figure 2: Darktrace model breach Event Log showing the initial file download, immediately followed by a connection attempt to a Pikabot C2 server.

Around 40 minutes after the initial download, Darktrace detected the device performing suspicious DNS tunneling using a pattern that resembled the Cobalt Strike Beacon. This was accompanied by beaconing activity to a rare domain, ‘wordstt182[.]com’, which was registered only 4 days prior to this activity [8]. Darktrace observed additional DNS connections to the endpoint, ‘building4business[.]net’, which had been linked to Black Basta ransomware [2].

Figure 3: The affected device making successful TXT DNS requests to known Black Basta endpoints.

As this customer had integrated Darktrace with the Microsoft Defender, Defender was able to contextualize the DETECT model breaches with endpoint insights, such as known threats and malware, providing customers with unparalleled visibility of the host-level detections surrounding network-level anomalies.

In this case, the behavior of the affected device triggered multiple Microsoft Defender alerts, including one alert which linked the activity to the threat actor Storm-0464, another name for TA577 and Water Curupira. These insights were presented to the customer in the form of a Security Integration alert, allowing them to build a full picture of the ongoing incident.

Figure 4: Security Integration alert from Microsoft Defender in Darktrace, linking the observed activity to the threat group Storm-0464.

As the customer had subscribed to Darktrace’s Proactive Threat Notification (PTN) service, the customer received timely alerts from Darktrace’s SOC notifying them of the suspicious activity associated with Pikabot. This allowed the customer’s security team to quickly identify the affected device and remove it from their environment for remediation.

Although the customer did have Darktrace RESPOND™ enabled on their network, it was configured in human confirmation mode, requiring manual application for any RESPOND actions. RESPOND had suggested numerous actions to interrupt and contain the attack, including blocking connections to the observed Pikabot C2 addresses, which were manually actioned by the customer’s security team after the fact. Had RESPOND been enabled in autonomous response mode during the attack, it would have autonomously blocked these C2 connections and prevented the download of any suspicious files, effectively halting the escalation of the attack.

Nonetheless, Darktrace DETECT’s prompt identification and alerting of this incident played a crucial role in enabling the customer to mitigate the threat of Pikabot, preventing it from progressing into a disruptive ransomware attack.

Figure 5: Darktrace RESPOND actions recommended from the initial file download and throughout the C2 traffic, ranging from blocking specific connections to IP addresses and ports to enforcing a normal pattern of life for the source device.

Conclusion

Pikabot is just one recent example of a modular strain of loader known for its adaptability and speed, seamlessly changing tactics from one campaign to the next and utilizing new infrastructure to initiate multi-stage attacks. Leveraging commonly used tools and services like Windows PowerShell and cURL, alongside anti-analysis techniques, this malware can evade the detection and often bypass traditional security tools.

In this incident, Darktrace detected a Pikabot infection in its early stages, identifying an anomalous file download using a cURL user agent, a new tactic for this particular strain of malware. This timely detection, coupled with the support of Darktrace’s SOC, empowered the customer to quickly identify the compromised device and act against it, thwarting threat actors attempting to connect to malicious Cobalt Strike and Black Basta servers. By preventing the escalation of the attack, including potential ransomware deployment, the customer’s environment remained safeguarded.

Had Darktrace RESPOND been enabled in autonomous response mode at the time of this attack, it would have been able to further support the customer by applying targeted mitigative actions to contain the threat of Pikabot at its onset, bolstering their defenses even more effectively.

Credit to Brianna Leddy, Director of Analysis, Signe Zaharka, Senior Cyber Security Analyst

Appendix

Darktrace DETECT Models

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Powershell to Rare External

Anomalous Connection / Rare External SSL Self-Signed

Anomalous Connection / Repeated Rare External SSL Self-Signed

Anomalous File / EXE from Rare External Location

Anomalous File / Masqueraded File Transfer

Anomalous File / Multiple EXE from Rare External Locations

Compromise / Agent Beacon to New Endpoint

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / DNS / DNS Tunnel with TXT Records

Compromise / New or Repeated to Unusual SSL Port

Compromise / SSL Beaconing to Rare Destination

Compromise / Suspicious Beaconing Behaviour

Compromise / Suspicious File and C2

Device / Initial Breach Chain Compromise

Device / Large Number of Model Breaches

Device / New PowerShell User Agent

Device / New User Agent

Device / New User Agent and New IP

Device / Suspicious Domain

Security Integration / C2 Activity and Integration Detection

Security Integration / Egress and Integration Detection

Security Integration / High Severity Integration Detection

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Detection

Security Integration / Low Severity Integration Incident

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Security Integration and Network Activity Block

List of Indicators of Compromise (IoC)

IOC - TYPE - DESCRIPTION + CONFIDENCE

128.140.102[.]132 - IP Address - Pikabot Download

185.106.94[.]174:5000 - IP Address: Port - Pikabot C2 Endpoint

80.85.140[.]152:5938 - IP Address: Port - Pikabot C2 Endpoint

building4business[.]net - Hostname - Cobalt Strike DNS Beacon

wordstt182[.]com - Hostname - Cobalt Strike Server

167.88.166[.]109 - IP Address - Cobalt Strike Server

192.9.135[.]73 - IP - Pikabot C2 Endpoint

192.121.17[.]68 - IP - Pikabot C2 Endpoint

185.87.148[.]132 - IP - Pikabot C2 Endpoint

129.153.22[.]231 - IP - Pikabot C2 Endpoint

129.153.135[.]83 - IP - Pikabot C2 Endpoint

154.80.229[.]76 - IP - Pikabot C2 Endpoint

192.121.17[.]14 - IP - Pikabot C2 Endpoint

162.252.172[.]253 - IP - Pikabot C2 Endpoint

103.124.105[.]147 - IP - Likely Pikabot Download

178.18.246[.]136 - IP - Pikabot C2 Endpoint

86.38.225[.]106 - IP - Pikabot C2 Endpoint

198.44.187[.]12 - IP - Pikabot C2 Endpoint

154.12.233[.]66 - IP - Pikabot C2 Endpoint

MITRE ATT&CK Mapping

TACTIC - TECHNIQUE

Defense Evasion - Masquerading: Masquerade File Type (T1036.008)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Non-Standard Port (T1571)

Command and Control - Application Layer Protocol: DNS (T1071.004)

Command and Control - Protocol Tunneling (T1572)

References

[1] https://news.sophos.com/en-us/2023/06/12/deep-dive-into-the-pikabot-cyber-threat/?&web_view=true  

[2] https://www.trendmicro.com/en_be/research/24/a/a-look-into-pikabot-spam-wave-campaign.html

[3] https://thehackernews.com/2024/01/alert-water-curupira-hackers-actively.html

[4] https://www.darkreading.com/cyberattacks-data-breaches/pikabot-malware-qakbot-replacement-black-basta-attacks

[5] https://www.redpacketsecurity.com/pikabot-distributed-via-malicious-ads-6/

[6] https://www.virustotal.com/gui/ip-address/185.106.94.174/detection

[7] https://www.virustotal.com/gui/ip-address/80.85.140.152/detection

[8] https://www.domainiq.com/domain?wordstt182.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI