Blog
/

Inside the SOC

/
March 19, 2024

Pikabot: Battling a Fast-Moving Loader Malware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Mar 2024
Discover how Darktrace tackled the Pikabot loader malware in 2023, the new tactics used, and how traditional security measures were bypassed.

How does Loader Malware work?

Throughout 2023, the Darktrace Threat Research team identified and investigated multiple strains of loader malware affecting customers across its fleet. These malicious programs typically serve as a gateway for threat actors to gain initial access to an organization’s network, paving the way for subsequent attacks, including additional malware infections or disruptive ransomware attacks.

How to defend against loader malware

The prevalence of such initial access threats highlights the need for organizations to defend against multi-phase compromises, where modular malware swiftly progresses from one stage of an attack to the next. One notable example observed in 2023 was Pikabot, a versatile loader malware used for initial access and often accompanied by secondary compromises like Cobalt Strike and Black Basta ransomware.

While Darktrace initially investigated multiple instances of campaign-like activity associated with Pikabot during the summer of 2023, a new campaign emerged in October which was observed targeting a Darktrace customer in Europe. Thanks to the timely detection by Darktrace DETECT™ and the support of Darktrace’s Security Operations Center (SOC), the Pikabot compromise was quickly shut down before it could escalate into a more disruptive attack.

What is Pikabot?

Pikabot is one of the latest modular loader malware strains that has been active since the first half of 2023, with several evolutions in its methodology observed in the months since. Initial researchers noted similarities to the Qakbot aka Qbot or Pinkslipbot and Mantanbuchus malware families, and while Pikabot appears to be a new malware in early development, it shares multiple commonalities with Qakbot [1].

First, both Pikabot and Qakbot have similar distribution methods, can be used for multi-stage attacks, and are often accompanied by downloads of Cobalt Strike and other malware strains. The threat actor known as TA577, which has also been referred to as Water Curupira, has been seen to use both types of malware in spam campaigns which can lead to Black Basta ransomware attacks [2] [3].Notably, a rise in Pikabot campaigns were observed in September and October 2023, shortly after the takedown of Qakbot in Operation Duck Hunt, suggesting that Pikabot may be serving as a replacement for initial access to target network [4].

How does Pikabot malware work?

Many Pikabot infections start with a malicious email, particularly using email thread hijacking; however, other cases have been distributed via malspam and malvertising [5]. Once downloaded, Pikabot runs anti-analysis techniques and checks the system’s language, self-terminating if the language matches that of a Commonwealth of Independent States (CIS) country, such as Russian or Ukrainian. It will then gather key information to send to a command-and-control (C2) server, at which point additional payload downloads may be observed [2]. Early response to a Pikabot infection is important for organizations to prevent escalation to a significant compromise such as ransomware.

Darktrace’s Coverage of Pikabot malware

Between April and July 2023, the Darktrace Threat Research team investigated Pikabot infections affected more than 15 customer environments; these attacks primarily targeted US and European organizations spanning multiple industries, and most followed the below lifecycle:

  1. Initial access via malspam or email, often outside of Darktrace’s scope
  2. Suspicious executable download from a URI in the format /\/[a-z0-9A-Z]{3,}\/[a-z0-9A-Z]{5,}/ and using a Windows PowerShell user agent
  3. C2 connections to IP addresses on uncommon ports including 1194 and 2078
  4. Some cases involved further C2 activity to Cobalt Strike endpoints

In October 2023, a second campaign emerged that largely followed the same attack pattern, with a notable difference that cURL was used for the initial payload download as opposed to PowerShell. All the Pikabot cases that Darktrace has observed since October 2023 have used cURL, which could indicate a shift in approach from targeting Windows devices to multi-operating system environments.

Figure 1: Timeline of the Pikabot infection over a 2-hour period.

On October 17, 2023, Darktrace observed a Pikabot infection on the network of a European customer after an internal user seemingly clicked a malicious link in a phishing email, thereby compromising their device. As the customer did not have Darktrace/Email™ deployed on their network, Darktrace did not have visibility over the email. Despite this, DETECT was still able to provide full visibility over the network-based activity that ensued.

Darktrace observed the device using a cURL user agent when initiating the download of an unusual executable (.exe) file from an IP address that had never previously been observed on the network. Darktrace further recognized that the executable file was attempting to masquerade as a different file type, likely to evade the detection of security teams and their security tools. Within one minute, the device began to communicate with additional unusual IP addresses on uncommon ports (185.106.94[.]174:5000 and 80.85.140[.]152:5938), both of which have been noted by open-source intelligence (OSINT) vendors as Pikabot C2 servers [6] [7].

Figure 2: Darktrace model breach Event Log showing the initial file download, immediately followed by a connection attempt to a Pikabot C2 server.

Around 40 minutes after the initial download, Darktrace detected the device performing suspicious DNS tunneling using a pattern that resembled the Cobalt Strike Beacon. This was accompanied by beaconing activity to a rare domain, ‘wordstt182[.]com’, which was registered only 4 days prior to this activity [8]. Darktrace observed additional DNS connections to the endpoint, ‘building4business[.]net’, which had been linked to Black Basta ransomware [2].

Figure 3: The affected device making successful TXT DNS requests to known Black Basta endpoints.

As this customer had integrated Darktrace with the Microsoft Defender, Defender was able to contextualize the DETECT model breaches with endpoint insights, such as known threats and malware, providing customers with unparalleled visibility of the host-level detections surrounding network-level anomalies.

In this case, the behavior of the affected device triggered multiple Microsoft Defender alerts, including one alert which linked the activity to the threat actor Storm-0464, another name for TA577 and Water Curupira. These insights were presented to the customer in the form of a Security Integration alert, allowing them to build a full picture of the ongoing incident.

Figure 4: Security Integration alert from Microsoft Defender in Darktrace, linking the observed activity to the threat group Storm-0464.

As the customer had subscribed to Darktrace’s Proactive Threat Notification (PTN) service, the customer received timely alerts from Darktrace’s SOC notifying them of the suspicious activity associated with Pikabot. This allowed the customer’s security team to quickly identify the affected device and remove it from their environment for remediation.

Although the customer did have Darktrace RESPOND™ enabled on their network, it was configured in human confirmation mode, requiring manual application for any RESPOND actions. RESPOND had suggested numerous actions to interrupt and contain the attack, including blocking connections to the observed Pikabot C2 addresses, which were manually actioned by the customer’s security team after the fact. Had RESPOND been enabled in autonomous response mode during the attack, it would have autonomously blocked these C2 connections and prevented the download of any suspicious files, effectively halting the escalation of the attack.

Nonetheless, Darktrace DETECT’s prompt identification and alerting of this incident played a crucial role in enabling the customer to mitigate the threat of Pikabot, preventing it from progressing into a disruptive ransomware attack.

Figure 5: Darktrace RESPOND actions recommended from the initial file download and throughout the C2 traffic, ranging from blocking specific connections to IP addresses and ports to enforcing a normal pattern of life for the source device.

Conclusion

Pikabot is just one recent example of a modular strain of loader known for its adaptability and speed, seamlessly changing tactics from one campaign to the next and utilizing new infrastructure to initiate multi-stage attacks. Leveraging commonly used tools and services like Windows PowerShell and cURL, alongside anti-analysis techniques, this malware can evade the detection and often bypass traditional security tools.

In this incident, Darktrace detected a Pikabot infection in its early stages, identifying an anomalous file download using a cURL user agent, a new tactic for this particular strain of malware. This timely detection, coupled with the support of Darktrace’s SOC, empowered the customer to quickly identify the compromised device and act against it, thwarting threat actors attempting to connect to malicious Cobalt Strike and Black Basta servers. By preventing the escalation of the attack, including potential ransomware deployment, the customer’s environment remained safeguarded.

Had Darktrace RESPOND been enabled in autonomous response mode at the time of this attack, it would have been able to further support the customer by applying targeted mitigative actions to contain the threat of Pikabot at its onset, bolstering their defenses even more effectively.

Credit to Brianna Leddy, Director of Analysis, Signe Zaharka, Senior Cyber Security Analyst

Appendix

Darktrace DETECT Models

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Powershell to Rare External

Anomalous Connection / Rare External SSL Self-Signed

Anomalous Connection / Repeated Rare External SSL Self-Signed

Anomalous File / EXE from Rare External Location

Anomalous File / Masqueraded File Transfer

Anomalous File / Multiple EXE from Rare External Locations

Compromise / Agent Beacon to New Endpoint

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / DNS / DNS Tunnel with TXT Records

Compromise / New or Repeated to Unusual SSL Port

Compromise / SSL Beaconing to Rare Destination

Compromise / Suspicious Beaconing Behaviour

Compromise / Suspicious File and C2

Device / Initial Breach Chain Compromise

Device / Large Number of Model Breaches

Device / New PowerShell User Agent

Device / New User Agent

Device / New User Agent and New IP

Device / Suspicious Domain

Security Integration / C2 Activity and Integration Detection

Security Integration / Egress and Integration Detection

Security Integration / High Severity Integration Detection

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Detection

Security Integration / Low Severity Integration Incident

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Security Integration and Network Activity Block

List of Indicators of Compromise (IoC)

IOC - TYPE - DESCRIPTION + CONFIDENCE

128.140.102[.]132 - IP Address - Pikabot Download

185.106.94[.]174:5000 - IP Address: Port - Pikabot C2 Endpoint

80.85.140[.]152:5938 - IP Address: Port - Pikabot C2 Endpoint

building4business[.]net - Hostname - Cobalt Strike DNS Beacon

wordstt182[.]com - Hostname - Cobalt Strike Server

167.88.166[.]109 - IP Address - Cobalt Strike Server

192.9.135[.]73 - IP - Pikabot C2 Endpoint

192.121.17[.]68 - IP - Pikabot C2 Endpoint

185.87.148[.]132 - IP - Pikabot C2 Endpoint

129.153.22[.]231 - IP - Pikabot C2 Endpoint

129.153.135[.]83 - IP - Pikabot C2 Endpoint

154.80.229[.]76 - IP - Pikabot C2 Endpoint

192.121.17[.]14 - IP - Pikabot C2 Endpoint

162.252.172[.]253 - IP - Pikabot C2 Endpoint

103.124.105[.]147 - IP - Likely Pikabot Download

178.18.246[.]136 - IP - Pikabot C2 Endpoint

86.38.225[.]106 - IP - Pikabot C2 Endpoint

198.44.187[.]12 - IP - Pikabot C2 Endpoint

154.12.233[.]66 - IP - Pikabot C2 Endpoint

MITRE ATT&CK Mapping

TACTIC - TECHNIQUE

Defense Evasion - Masquerading: Masquerade File Type (T1036.008)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Non-Standard Port (T1571)

Command and Control - Application Layer Protocol: DNS (T1071.004)

Command and Control - Protocol Tunneling (T1572)

References

[1] https://news.sophos.com/en-us/2023/06/12/deep-dive-into-the-pikabot-cyber-threat/?&web_view=true  

[2] https://www.trendmicro.com/en_be/research/24/a/a-look-into-pikabot-spam-wave-campaign.html

[3] https://thehackernews.com/2024/01/alert-water-curupira-hackers-actively.html

[4] https://www.darkreading.com/cyberattacks-data-breaches/pikabot-malware-qakbot-replacement-black-basta-attacks

[5] https://www.redpacketsecurity.com/pikabot-distributed-via-malicious-ads-6/

[6] https://www.virustotal.com/gui/ip-address/185.106.94.174/detection

[7] https://www.virustotal.com/gui/ip-address/80.85.140.152/detection

[8] https://www.domainiq.com/domain?wordstt182.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
No items found.
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 30, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI