Blog
/
/
August 25, 2020

Emotet Resurgence: Email & Network Defense Insights

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Aug 2020
Explore how Darktrace's defense in depth strategy combats Emotet's resurgence in email and network layers, ensuring robust cybersecurity.

The Emotet banking malware first emerged in 2014, and has since undergone multiple iterations. Emotet seeks to financially profit from a range of organizations by spreading rapidly from device to device and stealing sensitive financial information.

Darktrace’s AI has detected the return of this botnet after a five month absence. The new Spamware campaign has hit multiple industries through highly sophisticated phishing emails, containing either URLs linking to the download of a macro-containing Microsoft Word document or an attachment of the document itself. This iteration uses new variants of infrastructure and malware that were unknown to threat intelligence lists – thus easily bypassing static, rule-based defenses.

In this blog post, we investigate the attack from two angles. The first documents a case where Emotet successfully infiltrated a company’s network, where it was promptly detected and alerted on by the Enterprise Immune System. We then explore two customers who had extended Darktrace’s Cyber AI coverage to the inbox. While these organizations were also targeted by this latest Emotet campaign, the malicious email containing the Emotet payload was identified and blocked by Antigena Email.

Case study one: Detecting Emotet in the network

Figure 1: A timeline of the attack

This first case study looks at a large European organization spanning multiple industries, including healthcare, pharmaceuticals, and manufacturing. Darktrace’s AI was monitoring over 2500 devices when the organization became a victim of this new wave of Emotet.

The attack entered the business via a phishing email that fell outside of Darktrace’s scope in this particular deployment, as the customer had not yet activated Antigena Email. Either a malicious link or a macro-embedded Word document in the email directed a device to the malicious payload.

Darktrace’s Enterprise Immune System witnessed SSL connections to a 100% rare external IP address, and detected a Kernel crash on the device shortly afterwards, indicating potential exploitation.

Following these actions, the desktop began to beacon to multiple external endpoints using self-signed or invalid SSL certificates. The observed endpoints had previously been associated with Trickbot C2 servers and the Emotet malware. The likely overall dwell time – that is the length of time an attacker has free reign in an environment before they are eradicated – was in this instance around 24 hours, with most of the activity taking place on July 23.

The device then made a large number of new and unusual internal connection attempts over SMB (port 445) to 97 internal devices during a one-hour period. The goal was likely lateral movement, possibly with the intention to infect other devices, download additional malware, and send out more spam emails.

Darktrace’s AI had promptly alerted the security team to the initial rare connections, but when the device attempted lateral movement it escalated the severity of the alert. The security team was able to remediate the situation before further damage was done, taking the desktop offline.

This overview of the infected device shows the extent of the anomalous behavior, with over a dozen Darktrace detections firing in quick succession.

Figure 2: A graph showing unusual activity in combination with the large number of model breaches on July 23

Figure 3: A list of all model breaches occurring over a small time on the compromised device

Case study two: Catching Emotet in the email environment

While Darktrace’s Enterprise Immune System allows us to visualize the attack within the network, Antigena Email has also identified the Emotet phishing campaign in many other customer environments and stopped the attack before the payload could be downloaded.

One European organization was hit by multiple phishing emails associated with Emotet. These emails use a number of tactics, including personalized subject lines, malicious attachments, and hidden malicious URLs. However, Darktrace’s AI recognized the emails as highly anomalous for the organization and prevented them from reaching employees’ inboxes.

Figure 4: A snapshot of Antigena Email’s user interface. The subject line reads ‘Notice of transfer.’

Despite claiming to be from CaixaBank, a Spanish financial services company, Antigena Email revealed that the email was actually sent from a Brazilian domain. The email also contained a link that was hidden behind text suggesting it would lead to a CaixaBank domain, but Darktrace recognized this as a deliberate attempt to mislead the recipient. Antigena Email is unique in its ability to gather insights from across the broader business, and it leveraged this ability to reveal that the link in fact led to a WordPress domain that Darktrace’s AI identified as 100% rare for the business. This would not have been possible without a unified security platform analyzing and comparing data across different parts of the organization.

Figure 5: The malicious links contained in the email

The three above links surfaced by Darktrace are all associated with the Emotet malware, and prompt the user to download a Word file. This document contains a macro with instructions for downloading the actual virus payload.

Another email targeting the same organization contained a header suggesting it was from Vietnam. The sender had never been in any previous correspondence across the business, and the single, isolated link within the email was also revealed to be a 100% rare domain. The website displayed when visiting the domain imitates a legitimate printing business, but appears hastily made and contained a similar malicious payload.

In both cases, Darktrace’s AI recognized these as phishing attempts due to its understanding of normal communication patterns and behavior for the business and held the emails back from the inbox, preventing Emotet from entering the next phase of the attack life cycle.

Case study three: A truly global campaign

Darktrace has seen Emotet in attacks targeting customers around the world, with one of the most recent campaigns aimed at a food production and distribution company in Japan. This customer received six Emotet emails across July 29 and July 30. The senders spoofed Japanese names and some existing Japanese companies, including Mitsubishi. Antigena Email successfully detected and actioned these emails, recognizing the spoofing indicators, ‘unspoofing’ the emails, and converting the attachments.

Figure 6: A second Emotet email targeting an organization in Japan

Revealing a phish

Both the subject line and the filename translate to “Regarding the invoice,” followed by a number and the date. The email imitated a well-known Japanese company (三菱食品(株)), with ‘藤沢 昭彦’ as a common Japanese name and the appended ‘様’ serving a similar function to ‘Sir’ or ‘Dr,’ in a clear attempt to mimic a legitimate business email.

A subsequent investigation revealed that the sender’s location was actually Portugal, and the hash values of Microsoft Word attachments were consistent with Emotet. Crucially, at the time of the attack, these file hashes were not publicly associated with any malicious behavior and so could not have been used for initial detection.

Figure 7: Antigena Email shows critical metrics revealing the true source of the email

Surfacing further key metrics behind the email, Antigena Email revealed that the true sender was using a GMO domain name. GMO is a Japanese cloud-hosting company that offers cheap web email services.

Figure 8: Antigena Email reveals the anomalous extensions and mimes

The details of the attachment show that both the extension and mime type is anomalous in comparison to documents this customer commonly exchanges by email.

Figure 9: Antigena Email detects the attempt at inducement

Antigena Email’s models are able to recognize topic anomalies and inducement attempts in emails, regardless of the language they are written in. Despite this email being written in Japanese, Darktrace’s AI was still able to reveal the attempt at inducement, giving the email a high score of 85.

Figure 10: The six successive Emotet emails

The close proximity in which these emails were sent and the fact they all contained URLs consistent with Emotet suggests that they are likely part of the same campaign. Different recipients received the emails from different senders in an attempt to bypass traditional security tools, which are trained to deny-list an individual sender once it is recognized as bad.

A defense in depth

This new campaign and the comeback of the Emotet malware has shown the need for defense in depth – or having multiple layers of security across the different areas of a business, including email, network, cloud and SaaS, and beyond.

Historically, defense in depth has led companies to adopt myriad point solutions, which can be both expensive and challenging to manage. Security leaders are increasingly abandoning point solutions in favor of a single security platform, which not only makes handling the security stack easier and more efficient, but creates synergies between different parts of the platform. Data can be analyzed across different sources and insights drawn from different areas of the organization, helping detect sophisticated attacks that might attempt to exploit a business’ siloed approach to security.

A single platform ultimately reduces the friction for security teams while allowing for effective, company-wide incident investigation. And when a platform approach leverages AI to understand normal behavior rather than looking for ‘known bad’, it can detect unknown and emerging threats – and help prevent damage from being done.

Thanks to Darktrace analyst Beverly McCann for her insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

AI

/

March 11, 2025

Survey findings: AI Cyber Threats are a Reality, the People are Acting Now

Default blog imageDefault blog image

Artificial intelligence is changing the cybersecurity field as fast as any other, both on the offensive and defensive side. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is out now.

Download the full report to explore these findings in depth

How is AI impacting the threat landscape?

state of ai in cybersecurity report graphic showing ai powered cyber threats having an impact on organizations

Nearly 74% of participants say AI-powered threats are a major challenge for their organization and 90% expect these threats to have a significant impact over the next one to two years, a slight increase from last year. These statistics highlight that AI is not just an emerging risk but a present and evolving one.

As attackers harness AI to automate and scale their operations, security teams must adapt just as quickly. Organizations that fail to prioritize AI-specific security measures risk falling behind, making proactive defense strategies more critical than ever.

Some of the most pressing AI-driven cyber threats include:

  • AI-powered social engineering: Attackers are leveraging AI to craft highly personalized and convincing phishing emails, making them harder to detect and more likely to bypass traditional defenses.
  • More advanced attacks at speed and scale: AI lowers the barrier for less skilled threat actors, allowing them to launch sophisticated attacks with minimal effort.
  • Attacks targeting AI systems: Cybercriminals are increasingly going after AI itself, compromising machine learning models, tampering with training data, and exploiting vulnerabilities in AI-driven applications and APIs.

Safe and secure use of AI

AI is having an effect on the cyber-threat landscape, but it also is starting to impact every aspect of a business – from marketing to HR to operations. The accessibility of AI tools for employees improves workflows, but also poses risks like data privacy violations, shadow AI, and violation of industry regulations.

How are security practitioners accommodating for this uptick in AI use across business?

Among survey participants 45% of security practitioners say they had already established a policy on the safe and secure use of AI and around 50% are in discussions to do so.

While almost all participants acknowledge that this is a topic that needs to be addressed, the gap between discussion and execution could underscore a need for greater insight, stronger leadership commitment, and adaptable security frameworks to keep pace with AI advancements in the workplace. The most popular actions taken are:

  1. Implemented security controls to prevent unwanted exposure of corporate data when using AI technology (67%)
  2. Implemented security controls to protect against other threats/risks associated with using AI technology (62%)

This year specifically, we see further action being taken with the implementation of security controls, training, and oversight.

For a more detailed breakdown that includes results based on industry and organizational size, download the full report here.

AI threats are rising, but security teams still face major challenges

78% of CISOs say AI-powered cyber-threats are already having a significant impact on their organization, a 5% increase from last year.

While cyber professionals feel more prepared for AI powered threats than they did 12 months ago, 45% still say their organization is not adequately prepared—down from 60% last year.

Despite this optimism, key challenges remain, including:

  • A shortage of personnel to manage tools and alerts
  • Gaps in knowledge and skills related to AI-driven countermeasures

Confidence in traditional security tools vs. new AI based tools

This year, 73% of survey participants expressed confidence in their security team’s proficiency in using AI within their tool stack, marking an increase from the previous year.

However, only 50% of participants have confidence in traditional cybersecurity tools to detect and block AI-powered threats. In contrast, 75% of participants are confident in AI-powered security solutions for detecting and blocking such threats and attacks.

As leading organizations continue to implement and optimize their use of AI, they are incorporating it into an increasing number of workflows. This growing familiarity with AI is likely to boost the confidence levels of practitioners even further.

The data indicates a clear trend towards greater reliance on AI-powered security solutions over traditional tools. As organizations become more adept at integrating AI into their operations, their confidence in these advanced technologies grows.

This shift underscores the importance of staying current with AI advancements and ensuring that security teams are well-trained in utilizing these tools effectively. The increasing confidence in AI-driven solutions reflects their potential to enhance cybersecurity measures and better protect against sophisticated threats.

State of AI report

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

March 11, 2025

Darktrace's Early Detection of the Latest Ivanti Exploits

Default blog imageDefault blog image

As reported in Darktrace’s 2024 Annual Threat Report, the exploitation of Common Vulnerabilities and Exposures (CVEs) in edge infrastructure has consistently been a significant concern across the threat landscape, with internet-facing assets remaining highly attractive to various threat actors.

Back in January 2024, the Darktrace Threat Research team investigated a surge of malicious activity from zero-day vulnerabilities such as those at the time on Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. These vulnerabilities were disclosed by Ivanti in January 2024 as CVE-2023-46805 (Authentication bypass vulnerability) and CVE-2024-21887 (Command injection vulnerability), where these two together allowed for unauthenticated, remote code execution (RCE) on vulnerable Ivanti systems.

What are the latest vulnerabilities in Ivanti products?

In early January 2025, two new vulnerabilities were disclosed in Ivanti CS and PS, as well as their Zero Trust Access (ZTA) gateway products.

  • CVE-2025-0282: A stack-based buffer overflow vulnerability. Successful exploitation could lead to unauthenticated remote code execution, allowing attackers to execute arbitrary code on the affected system [1]
  • CVE-2025-0283: When combined with CVE-2025-0282, this vulnerability could allow a local authenticated attacker to escalate privileges, gaining higher-level access on the affected system [1]

Ivanti also released a statement noting they are currently not aware of any exploitation of CVE-2025-0283 at the time of disclosure [1].

Darktrace coverage of Ivanti

The Darktrace Threat Research team investigated the new Ivanti vulnerabilities across their customer base and discovered suspicious activity on two customer networks. Indicators of Compromise (IoCs) potentially indicative of successful exploitation of CVE-2025-0282 were identified as early as December 2024, 11 days before they had been publicly disclosed by Ivanti.

Case 1: December 2024

Authentication with a Privileged Credential

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024, when a customer device was observed logging into the network via SMB using the credential “svc_negbackups”, before authenticating with the credential “svc_negba” via RDP.

This likely represented a threat actor attempting to identify vulnerabilities within the system or application and escalate their privileges from a basic user account to a more privileged one. Darktrace / NETWORK recognized that the credential “svc_negbackups” was new for this device and therefore deemed it suspicious.

Darktrace / NETWORK’s detection of the unusual use of a new credential.
Figure 1: Darktrace / NETWORK’s detection of the unusual use of a new credential.

Likely Malicious File Download

Shortly after authentication with the privileged credential, Darktrace observed the device performing an SMB write to the C$ share, where a likely malicious executable file, ‘DeElevate64.exe’ was detected. While this is a legitimate Windows file, it can be abused by malicious actors for Dynamic-Link Library (DLL) sideloading, where malicious files are transferred onto other devices before executing malware. There have been external reports indicating that threat actors have utilized this technique when exploiting the Ivanti vulnerabilities [2].

Darktrace’s detection the SMB write of the likely malicious file ‘DeElevate64.exe’ on December 29, 2024.
Figure 2: Darktrace’s detection the SMB write of the likely malicious file ‘DeElevate64.exe’ on December 29, 2024.

Shortly after, a high volume of SMB login failures using the credential “svc_counteract-ext” was observed, suggesting potential brute forcing activity. The suspicious nature of this activity triggered an Enhanced Monitoring model alert that was escalated to Darktrace’s Security Operations Center (SOC) for further investigation and prompt notification, as the customer was subscribed to the Security Operations Support service.  Enhanced Monitoring are high-fidelity models detect activities that are more likely to be indicative of compromise

Suspicious Scanning and Internal Reconnaissance

Darktrace then went on to observe the device carrying out network scanning activity as well as anomalous ITaskScheduler activity. Threat actors can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The same device was also seen carrying out uncommon WMI activity.

Darktrace’s detection of a suspicious network scan from the compromised device.
Figure 3: Darktrace’s detection of a suspicious network scan from the compromised device.

Further information on the suspicious scanning activity retrieved by Cyber AI Analyst, including total number of connections and ports scanned.
Figure 4: Further information on the suspicious scanning activity retrieved by Cyber AI Analyst, including total number of connections and ports scanned.
Darktrace’s detection of a significant spike in WMI activity represented by DCE_RPC protocol request increases at the time, with little to no activity observed one week either side.
Figure 5: Darktrace’s detection of a significant spike in WMI activity represented by DCE_RPC protocol request increases at the time, with little to no activity observed one week either side.

Case 2: January 2025

Suspicious File Downloads

On January 13, 2025, Darktrace began to observe activity related to the exploitation of CVE-2025-0282  on the network of another customer, with one in particular device attempting to download likely malicious files.

Firstly, Darktrace observed the device making a GET request for the file “DeElevator64.dll” hosted on the IP 104.238.130[.]185. The device proceeded to download another file, this time “‘DeElevate64.exe”. from the same IP. This was followed by the download of “DeElevator64.dll”, similar to the case observed in December 2024. External reporting indicates that this DLL has been used by actors exploiting CVE-2025-0282 to sideload backdoor into infected systems [2]

Darktrace’s detection of the download of the suspicious file “DeElevator64.dll” on January 13, 2025.
Figure 6: Darktrace’s detection of the download of the suspicious file “DeElevator64.dll” on January 13, 2025.

Suspicious Internal Activity

Just like the previous case, on January 15, the same device was observed making numerous internal connections consistent with network scanning activity, as well as DCE-RPC requests.

Just a few minutes later, Darktrace again detected the use of a new administrative credential, observing the following details:

  • domain=REDACTED hostname=DESKTOP-1JIMIV3 auth_successful=T result=success ntlm_version=2 .

The hostname observed by Darktrace, “DESKTOP-1JIMIV3,” has also been identified by other external vendors and was associated with a remote computer name seen accessing compromised accounts [2].

Darktrace also observed the device performing an SMB write of an additional file, “to.bat,” which may have represented another malicious file loaded from the DLL files that the device had downloaded earlier. It is possible this represented the threat actor attempting to deploy a remote scheduled task.

Darktrace’s detection of SMB Write of the suspicious file “to.bat”.
Figure 7: Darktrace’s detection of SMB Write of the suspicious file “to.bat”.

Further investigation revealed that the device was likely a Veeam server, with its MAC address indicating it was a VMware device. It also appeared that the Veeam server was capturing activities referenced from the hostname DESKTOP-1JIMIV3. This may be analogous to the remote computer name reported by external researchers as accessing accounts [2]. However, this activity might also suggest that while the same threat actor and tools could be involved, they may be targeting a different vulnerability in this instance.

Autonomous Response

In this case, the customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device. This action allows a device to make its usual connections while blocking any that deviate from expected behavior. These mitigative actions by Darktrace ensured that the compromise was promptly halted, preventing any further damage to the customer’s environment.

Darktrace's Autonomous Response capability actively mitigating the suspicious internal connectivity.
Figure 8: Darktrace's Autonomous Response capability actively mitigating the suspicious internal connectivity.

Conclusion

If the previous blog in January 2024 was a stark reminder of the threat posed by malicious actors exploiting Internet-facing assets, the recent activities surrounding CVE-2025-0282 and CVE-2025-0283 emphasize this even further.

Based on the telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated .

These activities included the download of suspicious files such as “DeElevate64.exe” and “DeElevator64.dll” potentially used by attackers to sideload backdoors into infected systems. The suspicious hostname DESKTOP-1JIMIV3 was also observed and appears to be associated with a remote computer name seen accessing compromised accounts. These activities are far from exhaustive, and many more will undoubtedly be uncovered as threat actors evolve.

Fortunately, Darktrace was able to swiftly detect and respond to suspicious network activity linked to the latest Ivanti vulnerabilities, sometimes even before these vulnerabilities were publicly disclosed.

Credit to: Nahisha Nobregas, Senior Cyber Analyst, Emma Foulger, Principle Cyber Analyst, Ryan Trail, Analyst Content Lead and the Darktrace Threat Research Team

Appendices

Darktrace Model Detections

Case 1

·      Anomalous Connection / Unusual Admin SMB Session

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Internal / Unusual SMB Script Write

·      Anomalous File / Multiple EXE from Rare External Locations

·      Anomalous File / Script from Rare External Location

·      Compliance / SMB Drive Write

·      Device / Multiple Lateral Movement Model Alerts

·      Device / Network Range Scan

·      Device / Network Scan

·      Device / New or Uncommon WMI Activity

·      Device / RDP Scan

·      Device / Suspicious Network Scan Activity

·      Device / Suspicious SMB Scanning Activity

·      User / New Admin Credentials on Client

·      User / New Admin Credentials on Server 

Case 2

·      Anomalous Connection / Unusual Admin SMB Session

·      Anomalous Connection / Unusual Admin RDP Session

·      Compliance / SMB Drive Write

·      Device / Multiple Lateral Movement Model Alerts

·      Device / SMB Lateral Movement

·      Device / Possible SMB/NTLM Brute Force

·      Device / Suspicious SMB Scanning Activity

·      Device / Network Scan

·      Device / RDP Scan

·      Device / Large Number of Model Alerts

·      Device / Anomalous ITaskScheduler Activity

·      Device / Suspicious Network Scan Activity

·      Device / New or Uncommon WMI Activity

List of IoCs Possible IoCs:

·      DeElevator64.dll

·      deelevator64.dll

·      DeElevate64.exe

·      deelevator64.dll

·      deelevate64.exe

·      to.bat

Mid-high confidence IoCs:

-       104.238.130[.]185

-       http://104.238.130[.]185/DeElevate64.exe

-       http://104.238.130[.]185/DeElevator64.dll

-       DESKTOP-1JIMIV3

References:

1.     https://www.ivanti.com/blog/security-update-ivanti-connect-secure-policy-secure-and-neurons-for-zta-gateways

2.     https://unit42.paloaltonetworks.com/threat-brief-ivanti-cve-2025-0282-cve-2025-0283/

3.     https://www.proofpoint.com/uk/blog/identity-threat-defense/privilege-escalation-attack#:~:text=In%20this%20approach%2C%20attackers%20exploit,handing%20over%20their%20login%20credentials

Continue reading
About the author
Hugh Turnbull
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI