Blog
/

Inside the SOC

/
January 26, 2024

Post-Exploitation Activities of Ivanti CS/PS Appliances

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jan 2024
Darktrace’s teams have observed a surge in malicious activities targeting Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. Learn more!

What are 'Unknown Unknowns'?

When critical vulnerabilities in Internet-facing assets are not yet publicly disclosed, they can provide unfettered access to organizations’ networks. Threat actors’ exploitation of these vulnerabilities are prime examples of “unknown unknowns” – behaviors which security teams are not even aware that they are not aware of.  

Therefore, it is not surprising that zero-day vulnerabilities in Internet-facing assets are so attractive to state-linked actors and cybercriminals. These criminals will abuse the access these vulnerabilities afford them to progress towards harmful or disruptive objectives. This trend in threat actor activity was particularly salient in January 2024, following the disclosure of two critical vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. The widespread exploitation of these vulnerabilities was mirrored across Darktrace’s customer base in mid-January 2024, with Darktrace’s Security Operations Center (SOC) and Threat Research teams observing a surge in malicious activities targeting customers’ CS/PS appliances.

Vulnerabilities in Ivanti CS/PS

On January 10, 2024, Ivanti published a Security Advisory [1] and a Knowledge Base article [2] relating to the following two vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS):

  • CVE-2023-46805 (CVSS: 8.2; Type: Authentication bypass vulnerability)
  • CVE-2024-21887 (CVSS: 9.1; Type: Command injection vulnerability)

Conjoined exploitation of these vulnerabilities allows for unauthenticated, remote code execution (RCE) on vulnerable Ivanti systems. Volexity [3] and Mandiant [4] reported clusters of CS/PS compromises, tracked as UTA0178 and UNC5221 respectively. UTA0178 and UNC5221 compromises involve exploitation of CVE-2023-46805 and CVE-2024-21887 to deliver web shells and JavaScript credential harvesters to targeted CS/PS appliances. Both Volexity and Mandiant linked these compromises to a likely espionage-motivated, state-linked actor. GreyNoise [5] and Volexity [6] also reported likely cybercriminal activities targeting CS/PS appliances to deliver cryptominers.

The scale of this recent Ivanti CS/PS exploitation is illustrated by research findings recently shared by Censys [7]. According to these findings, as of January 22, around 1.5% of 26,000 Internet-exposed Ivanti CS appliances have been compromised, with the majority of compromised hosts falling within the United States. As cybercriminal interest in these Ivanti CS/PS vulnerabilities continues to grow, it is likely that so too will the number of attacks targeting them.

Observed Malicious Activities

Since January 15, 2024, Darktrace’s SOC and Threat Research team have observed a significant volume of malicious activities targeting customers’ Ivanti CS/PS appliances. Amongst the string of activities that were observed, the following threads were identified as salient:

  • Exploit validation activity
  • Exfiltration of system information
  • Delivery of C2 implant from AWS
  • Delivery of JavaScript credential stealer
  • SimpleHelp usage
  • Encrypted C2 on port 53
  • Delivery of cryptominer

Exploit Validation Activity

Malicious actors were observed using the out-of-band application security testing (OAST) services, Interactsh and Burp Collaborator, to validate exploits for CS/PS vulnerabilities. Malicious use of OAST services for exploit validation is common and has been seen in the early stages of previous campaigns targeting Ivanti systems [8]. In this case, the Interact[.]sh exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of 'oast[.]live', 'oast[.]site', 'oast[.]fun', 'oast[.]me', 'oast[.]online' and 'oast[.]pro'.  Burp Collaborator exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of ‘collab.urmcyber[.]xyz’ and ‘dnslog[.]store’.

Figure 1: Event Log showing a CS/PS appliance contacting an 'oast[.]pro' endpoint.
Figure 2: Event Log showing a CS/PS appliance contacting a 'collab.urmcyber[.]xyz' endpoint.
Figure 3: Packet capture (PCAP) of an Interactsh GET request.
Figure 4: PCAP of a Burp Collaborator GET request.

Exfiltration of System Information

The majority of compromised CS/PS appliances identified by Darktrace were seen using cURL to transfer hundreds of MBs of data to the external endpoint, 139.180.194[.]132. This activity appeared to be related to a threat actor attempting to exfiltrate system-related information from CS/PS appliances. These data transfers were carried out via HTTP on ports 443 and 80, with the Target URIs ‘/hello’ and ‘/helloq’ being seen in the relevant HTTP POST requests. The files sent over these data transfers were ‘.dat’ and ‘.sys’ files with what seems to be the public IP address of the targeted appliance appearing in each file’s name.

Figure 5: Event Log shows a CS/PS appliance making a POST request to 139.180.194[.]132 whilst simultaneously receiving connections from suspicious external endpoints.
Figure 6: PCAP of a POST request to 139.180.194[.]132.

Delivery of Command-and-Control (C2) implant from Amazon Web Services (AWS)

In many of the compromises observed by Darktrace, the malicious actor in question was observed delivering likely Rust-based ELF payloads to the CS/PS appliance from the AWS endpoints, archivevalley-media.s3.amazonaws[.]com, abode-dashboard-media.s3.ap-south-1.amazonaws[.]com, shapefiles.fews.net.s3.amazonaws[.]com, and blooming.s3.amazonaws[.]com. In one particular case, these downloads were immediately followed by the delivery of an 18 MB payload (likely a C2 implant) from the AWS endpoint, be-at-home.s3.ap-northeast-2.amazonaws[.]com, to the CS/PS appliance. Post-delivery, the implant seems to have initiated SSL beaconing connections to the external host, music.farstream[.]org. Around this time, Darktrace also observed the actor initiating port scanning and SMB enumeration activities from the CS/PS appliance, likely in preparation for moving laterally through the network.

Figure 7: Advanced Search logs showing a CS/PS appliance beaconing to music.farstream[.]org after downloading several payloads from AWS.

Delivery of JavaScript credential stealer

In a small number of observed cases, Darktrace observed malicious actors delivering what appeared to be a JavaScript credential harvester to targeted CS/PS appliances. The relevant JavaScript code contains instructions to send login credentials to likely compromised websites. In one case, the website, www.miltonhouse[.]nl, appeared in the code snippet, and in another, the website, cpanel.netbar[.]org, was observed. Following the delivery of this JavaScript code, HTTPS connections were observed to these websites.  This likely credential harvester appears to strongly resemble the credential stealer observed by Mandiant (dubbed ‘WARPWIRE’) in UNC5221 compromises and the credential stealer observed by Veloxity in UTA0178 compromises.

Figure 8: PCAP of ‘/3.js’ GET request for JavaScript credential harvester.
Figure 9: Snippet of response to '/3.js’ GET request.
Figure 10: PCAP of ‘/auth.js’ GET request for JavaScript credential harvester.
Figure 11: Snippet of response to '/auth.js’ GET request.
Figure 12: Advanced Search logs showing VPN-connected devices sending data to www.miltonhouse[.]nl after the Ivanti CS appliance received the JavaScript code.

The usage of this JavaScript credential harvester did not occur in isolation, but rather appears to have occurred as part of a chain of activity involving several further steps. The delivery of the ‘www.miltonhouse[.]nl’ JavaScript stealer seems to have occurred as a step in the following attack chain:  

1. Ivanti CS/PS appliance downloads a 8.38 MB ELF file over HTTP (with Target URI ‘/revsocks_linux_amd64’) from 188.116.20[.]38

2. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8444 to 185.243.112[.]245, with several MBs of data being exchanged

3. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.txt’) from 188.116.20[.]38

4. Ivanti CS/PS appliance downloads a 1.53 ELF MB file over HTTP (with Target URI ‘/aparche2’) from 91.92.240[.]113

5. Ivanti CS/PS appliance downloads a 4.5 MB ELF file over HTTP (with Target URI ‘/agent’) from 91.92.240[.]113

6. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

7. Ivanti CS/PS appliance downloads Javascript credential harvester over HTTP (with Target URI ‘/auth.js’) from 91.92.240[.]113

8. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.cgi’) from 91.92.240[.]113

9. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 91.92.240[.]71, with several MBs of data being exchanged

10. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

11. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8080 to 91.92.240[.]113, with several MBs of data being exchanged

12. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]112, with several MBs of data being exchanged  

These long SSL connections likely represent a malicious actor creating reverse shells from the targeted CS/PS appliance to their C2 infrastructure. Whilst it is not certain that these behaviors are part of the same attack chain, the similarities between them (such as the Target URIs, the JA3 client fingerprint and the use of port 11601) seem to suggest a link.  

Figure 13: Advanced Search logs showing a chain of malicious behaviours from a CS/PS appliance.
Figure 14: Advanced Search data showing the JA3 client fingerprint ‘19e29534fd49dd27d09234e639c4057e’ exclusively appearing in the aforementioned, long SSL connections from the targeted CS/PS appliance.
Figure 15: PCAP of ‘/login.txt’ GET request for a Perl script.
Figure 16: PCAP of ‘/login.cgi’ GET request for a Pearl script.

SimpleHelp Usage

After gaining a foothold on vulnerable CS/PS appliances, certain actors attempted to deepen their foothold within targeted networks. In several cases, actors were seen using valid account credentials to pivot over RDP from the vulnerable CS/PS appliance to other internal systems. Over these RDP connections, the actors appear to have installed the remote support tool, SimpleHelp, onto targeted internal systems, as evidenced by these systems’ subsequent HTTP requests. In one of the observed cases, a lateral movement target downloaded a 7.33 MB executable file over HTTP (Target URI: /ta.dat; User-Agent header: Microsoft BITS/7.8) from 45.9.149[.]215 just before showing signs of SimpleHelp usage. The apparent involvement of 45.9.149[.]215 in these SimpleHelp threads may indicate a connection between them and the credential harvesting thread outlined above.

Figure 17: Advanced Search logs showing an internal system making SimpleHelp-indicating HTTP requests immediately after receiving large volumes of data over RDP from an CS/PS appliance.
Figure 18: PCAP of a SimpleHelp-related GET request.

Encrypted C2 over port 53

In a handful of the recently observed CS/PS compromises, Darktrace identified malicious actors dropping a 16 MB payload which appears to use SSL-based C2 communication on port 53. C2 communication on port 53 is a commonly used attack method, with various malicious payloads, including Cobalt Strike DNS, being known to tunnel C2 communications via DNS requests on port 53. Encrypted C2 communication on port 53, however, is less common. In the cases observed by Darktrace, payloads were downloaded from 103.13.28[.]40 and subsequently reached back out to 103.13.28[.]40 over SSL on port 53.

Figure 19: PCAP of a ‘/linb64.png’ GET request.
Figure 20: Advanced Search logs showing a CS/PS appliance making SSL conns over port 53 to 103.13.28[.]40 immediately after downloading a 16 MB payload from 103.13.28[.]40.

Delivery of cryptominer

As is often the case, financially motivated actors also appeared to have sought to exploit the Ivanti appliances, with actors observed exploiting CS/PS appliances to deliver cryptomining malware. In one case, Darktrace observed an actor installing a Monero cryptominer onto a vulnerable CS/PS appliance, with the miner being downloaded via HTTP on port 8089 from 192.252.183[.]116.

Figure 21: PCAP of GET request for a Bash script which appeared to kill existing cryptominers.
Figure 22: PCAP of a GET request for a JSON config file – returned config file contains mining details such as ‘auto.3pool[.]org:19999’.
Figure 23: PCAP of a GET request for an ELF payload

Potential Pre-Ransomware Post-Compromise Activity

In one observed case, a compromise of a customer’s CS appliance was followed by an attacker using valid account credentials to connect to the customer’s CS VPN subnet. The attacker used these credentials to pivot to other parts of the customer’s network, with tools and services such as PsExec, Windows Management Instrumentation (WMI) service, and Service Control being abused to facilitate the lateral movement. Other Remote Monitoring and Management (RMM) tools, such as AnyDesk and ConnectWise Control (previously known as ScreenConnect), along with certain reconnaissance tools such as Netscan, Nmap, and PDQ, also appear to have been used. The attacker subsequently exfiltrated data (likely via Rclone) to the file storage service, put[.]io, potentially in preparation for a double extortion ransomware attack. However, at the time of writing, it was not clear what the relation was between this activity and the CS compromise which preceded it.

Darktrace Coverage

Darktrace has observed malicious actors carrying out a variety of post-exploitation activities on Internet-exposed CS/PS appliances, ranging from data exfiltration to the delivery of C2 implants and crypto-miners. These activities inevitably resulted in CS/PS appliances displaying patterns of network traffic greatly deviating from their typical “patterns of life”.

Darktrace DETECT™ identified these deviations and generated a variety of model breaches (i.e, alerts) highlighting the suspicious activity. Darktrace’s Cyber AI Analyst™ autonomously investigated the ongoing compromises and connected the individual model breaches, viewing them as related incidents rather than isolated events. When active and configured in autonomous response mode, Darktrace RESPOND™ containted attackers’ operations by autonomously blocking suspicious patterns of network traffic as soon as they were identified by Darktrace DETECT.

The exploit validation activities carried out by malicious actors resulted in CS/PS servers making HTTP connections with cURL User-Agent headers to endpoints associated with OAST services such as Interactsh and Burp Collaborator. Darktrace DETECT recognized that this HTTP activity was suspicious for affected devices, causing the following models to breach:

  • Compromise / Possible Tunnelling to Bin Services
  • Device / Suspicious Domain
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent
Figure 24: Event Log showing a CS/PS appliance breaching models due to its Interactsh HTTP requests.
Figure 25: Cyber AI Analyst Incident Event highlighting a CS/PS appliance's Interactsh connections.

Malicious actors’ uploads of system information to 139.180.194[.]132 resulted in cURL POST requests being sent from the targeted CS/PS appliances. Darktrace DETECT judged these HTTP POST requests to be anomalous, resulting in combinations of the following model breaches:

  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Unusual External Data to New Endpoint
  • Anomalous Connection / Data Sent to Rare Domain
Figure 26: Event Log showing the creation of a model breach due to a CS/PS appliance’s POST request to 139.180.194[.]132.
Figure 27: Cyber AI Analyst Incident Event highlighting POST requests from a CS/PS appliance to 139.180.194[.]132.

The installation of AWS-hosted C2 implants onto vulnerable CS/PS appliances resulted in beaconing connections which Darktrace DETECT recognized as anomalous, leading to the following model breaches:

  • Compromise / Beacon to Young Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score

When enabled in autonomous response mode, Darktrace RESPOND was able to follow up these detections by blocking affected devices from connecting externally over port 80, 443, 445 or 8081, effectively shutting down the attacker’s beaconing activity.

Figure 28: Event Log showing the creation of a model breach and the triggering of an autonomous RESPOND action due to a CS/PS appliance's beaconing connections.

The use of encrypted C2 on port 53 by malicious actors resulted in CS/PS appliances making SSL connections over port 53. Darktrace DETECT judged this port to be uncommon for SSL traffic and consequently generated the following model breach:

  • Anomalous Connection / Application Protocol on Uncommon Port
Figure 29: Cyber AI Analyst Incident Event highlighting a ‘/linb64.png’ GET request from a CS/PS appliance to 103.13.28[.]40.
Figure 30: Event Log showing the creation of a model breach due to CS/PS appliance’s external SSL connection on port 53.
Figure 31: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s SSL connections over port 53 to 103.13.28[.]40.

Malicious actors’ attempts to run cryptominers on vulnerable CS/PS appliances resulted in downloads of Bash scripts and JSON files from external endpoints rarely visited by the CS/PS appliances themselves or by neighboring systems. Darktrace DETECT identified these deviations in device behavior and generated the following model breaches:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download

Darktrace RESPOND, when configured to respond autonomously, was subsequently able to carry out a number of actions to contain the attacker’s activity. This included blocking all outgoing traffic on offending devices and enforcing a “pattern of life” on devices ensuring they had to adhere to expected network behavior.

Figure 32: Event Log showing the creation of model breaches and the triggering of autonomous RESPOND actions in response to a CS/PS appliance’s cryptominer download.
Figure 33: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s cryptominer download.

The use of RDP to move laterally and spread SimpleHelp to other systems resulted in CS/PS appliances using privileged credentials to initiate RDP sessions. These RDP sessions, and the subsequent traffic resulting from usage of SimpleHelp, were recognized by Darktrace DETECT as being highly out of character, prompting the following model breaches:

  • Anomalous Connection / Unusual Admin RDP Session
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Compromise / Suspicious HTTP Beacons to Dotted Quad
  • Anomalous File / Anomalous Octet Stream (No User Agent)
  • Anomalous Server Activity / Rare External from Server
Figure 34: Event Log showing the creation of a model breach due to a CS/PS appliance’s usage of an admin credential to RDP to another internal system.
Figure 35: Event Log showing the creation of model breaches due to SimpleHelp-HTTP requests from a device targeted for lateral movement.
Figure 36: Cyber AI Analyst Incident Event highlighting the SimpleHelp-indicating HTTP requests made by an internal system.

Conclusion

The recent widespread exploitation of Ivanti CS/PS is a stark reminder of the threat posed by malicious actors armed with exploits for Internet-facing assets.

Based on the telemetry available to Darktrace, a wide range of malicious activities were carried out against CS/PS appliances, likely via exploitation of the recently disclosed CVE-2023-46805 and CVE-2024-21887 vulnerabilities.

These activities include the usage of OAST services for exploit validation, the exfiltration of system information to 139.180.194[.]132, the delivery of AWS-hosted C2 implants, the delivery of JavaScript credential stealers, the usage of SimpleHelp, the usage of SSL-based C2 on port 53, and the delivery of crypto-miners. These activities are far from exhaustive, and many more activities will undoubtedly be uncovered as the situation develops and our understanding grows.

While there were no patches available at the time of writing, Ivanti stated that they were expected to be released shortly, with the “first version targeted to be available to customers the week of 22 January 2023 and the final version targeted to be available the week of 19 February” [9].

Fortunately for vulnerable customers, in their absence of patches Darktrace DETECT was able to identify and alert for anomalous network activity that was carried out by malicious actors who had been able to successfully exploit the Ivanti CS and PS vulnerabilities. While the activity that followed these zero-day vulnerabilities may been able to have bypass traditional security tools reliant upon existing threat intelligence and indicators of compromise (IoCs), Darktrace’s anomaly-based approach allows it to identify such activity based on the subtle deviations in a devices behavior that typically emerge as threat actors begin to work towards their goals post-compromise.

In addition to Darktrace’s ability to identify this type of suspicious behavior, its autonomous response technology, Darktrace RESPOND is able to provide immediate follow-up with targeted mitigative actions to shut down malicious activity on affected customer environments as soon as it is detected.

Credit to: Nahisha Nobregas, SOC Analyst, Emma Foulger, Principle Cyber Analyst, and the Darktrace Threat Research Team

Appendices

List of IoCs Possible IoCs:

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.3

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7

Mid-high confidence IoCs:

-       http://139.180.194[.]132:443/hello

-       http://139.180.194[.]132:443/helloq

-       http://blooming.s3.amazonaws[.]com/Ea7fbW98CyM5O (SHA256 hash: 816754f6eaf72d2e9c69fe09dcbe50576f7a052a1a450c2a19f01f57a6e13c17)

-       http://abode-dashboard-media.s3.ap-south-1.amazonaws[.]com/kaffMm40RNtkg (SHA256 hash: 47ff0ae9220a09bfad2a2fb1e2fa2c8ffe5e9cb0466646e2a940ac2e0cf55d04)

-       http://archivevalley-media.s3.amazonaws[.]com/bbU5Yn3yayTtV (SHA256 hash: c7ddd58dcb7d9e752157302d516de5492a70be30099c2f806cb15db49d466026)

-       http://shapefiles.fews.net.s3.amazonaws[.]com/g6cYGAxHt4JC1 (SHA256 hash: c26da19e17423ce4cb4c8c47ebc61d009e77fc1ac4e87ce548cf25b8e4f4dc28)

-       http://be-at-home.s3.ap-northeast-2.amazonaws[.]com/2ekjMjslSG9uI

-       music.farstream[.]org  • 104.21.86[.]153 / 172.67.221[.]78

-       http://197.243.22[.]27/3.js

-       http://91.92.240[.]113/auth.js

-       www.miltonhouse[.]nl • 88.240.53[.]22

-       cpanel.netbar[.]org • 146.19.212[.]12

-       http://188.116.20[.]38/revsocks_linux_amd64

-       185.243.112[.]245:8444

-        http://188.116.20[.]38/login.txt

-       http://91.92.240[.]113/aparche2 (SHA256 hash: 9d11c3cf10b20ff5b3e541147f9a965a4e66ed863803c54d93ba8a07c4aa7e50)

-       http://91.92.240[.]113/agent (SHA256 hash: 7967def86776f36ab6a663850120c5c70f397dd3834f11ba7a077205d37b117f)

-       45.9.149[.]215:11601

-       45.9.149[.]112:11601

-       http://91.92.240[.]113/login.cgi

-       91.92.240[.]71:11601

-       91.92.240[.]113:8080

-       http://45.9.149[.]215/ta.dat (SHA256 hash: 4bcf1333b3ad1252d067014c606fb3a5b6f675f85c59b69ca45669d45468e923)

-       91.92.241[.]18

-       94.156.64[.]252

-       http://144.172.76[.]76/lin86

-       144.172.122[.]14:443

-       http://185.243.115[.]58:37586/

-       http://103.13.28[.]40/linb64.png

-       103.13.28[.]40:53

-       159.89.82[.]235:8081

-       http://192.252.183[.]116:8089/u/123/100123/202401/d9a10f4568b649acae7bc2fe51fb5a98.sh

-       http://192.252.183[.]116:8089/u/123/100123/202401/sshd

-       http://192.252.183[.]116:8089/u/123/100123/202401/31a5f4ceae1e45e1a3cd30f5d7604d89.json

-       http://103.27.110[.]83/module/client_amd64

-       http://103.27.110[.]83/js/bootstrap.min.js?UUID=...

-       http://103.27.110[.]83/js/jquery.min.js

-       http://95.179.238[.]3/bak

-       http://91.92.244[.]59:8080/mbPHenSdr6Cf79XDAcKEVA

-       31.220.30[.]244

-       http://172.245.60[.]61:8443/SMUkbpX-0qNtLGsuCIuffAOLk9ZEBCG7bIcB2JT6GA/

-       http://172.245.60[.]61/ivanti

-       http://89.23.107[.]155:8080/l-5CzlHWjkp23gZiVLzvUg

-       http://185.156.72[.]51:8080/h7JpYIZZ1-rrk98v3YEy6w

-       http://185.156.72[.]51:8080/8uSQsOTwFyEAsXVwbAJ2mA

-       http://185.156.72[.]51:8080/vuln

-       185.156.72[.]51:4440

-       185.156.72[.]51:8080

-       185.156.72[.]51:4433

-       185.156.72[.]51:4446

-       185.156.72[.]51:4445

-       http://185.156.72[.]51/set.py

-       185.156.72[.]51:7777

-       45.9.151[.]107:7070

-       185.195.59[.]74:7070

-       185.195.59[.]74:20958

-       185.195.59[.]74:34436

-       185.195.59[.]74:37464

-       185.195.59[.]74:41468    

References

[1] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[2] https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[3] https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulnerabilities-in-ivanti-connect-secure-vpn/

[4] https://www.mandiant.com/resources/blog/suspected-apt-targets-ivanti-zero-day

[5] https://www.greynoise.io/blog/ivanti-connect-secure-exploited-to-install-cryptominers

[6] https://www.volexity.com/blog/2024/01/18/ivanti-connect-secure-vpn-exploitation-new-observations/

[7] https://censys.com/the-mass-exploitation-of-ivanti-connect-secure/

[8] https://darktrace.com/blog/entry-via-sentry-analyzing-the-exploitation-of-a-critical-vulnerability-in-ivanti-sentry

[9] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US  

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 28, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI