Blog
/
/
January 26, 2024

Post-Exploitation Activities of Ivanti CS/PS Appliances

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jan 2024
Darktrace’s teams have observed a surge in malicious activities targeting Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. Learn more!

What are 'Unknown Unknowns'?

When critical vulnerabilities in Internet-facing assets are not yet publicly disclosed, they can provide unfettered access to organizations’ networks. Threat actors’ exploitation of these vulnerabilities are prime examples of “unknown unknowns” – behaviors which security teams are not even aware that they are not aware of.  

Therefore, it is not surprising that zero-day vulnerabilities in Internet-facing assets are so attractive to state-linked actors and cybercriminals. These criminals will abuse the access these vulnerabilities afford them to progress towards harmful or disruptive objectives. This trend in threat actor activity was particularly salient in January 2024, following the disclosure of two critical vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. The widespread exploitation of these vulnerabilities was mirrored across Darktrace’s customer base in mid-January 2024, with Darktrace’s Security Operations Center (SOC) and Threat Research teams observing a surge in malicious activities targeting customers’ CS/PS appliances.

Vulnerabilities in Ivanti CS/PS

On January 10, 2024, Ivanti published a Security Advisory [1] and a Knowledge Base article [2] relating to the following two vulnerabilities in Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS):

  • CVE-2023-46805 (CVSS: 8.2; Type: Authentication bypass vulnerability)
  • CVE-2024-21887 (CVSS: 9.1; Type: Command injection vulnerability)

Conjoined exploitation of these vulnerabilities allows for unauthenticated, remote code execution (RCE) on vulnerable Ivanti systems. Volexity [3] and Mandiant [4] reported clusters of CS/PS compromises, tracked as UTA0178 and UNC5221 respectively. UTA0178 and UNC5221 compromises involve exploitation of CVE-2023-46805 and CVE-2024-21887 to deliver web shells and JavaScript credential harvesters to targeted CS/PS appliances. Both Volexity and Mandiant linked these compromises to a likely espionage-motivated, state-linked actor. GreyNoise [5] and Volexity [6] also reported likely cybercriminal activities targeting CS/PS appliances to deliver cryptominers.

The scale of this recent Ivanti CS/PS exploitation is illustrated by research findings recently shared by Censys [7]. According to these findings, as of January 22, around 1.5% of 26,000 Internet-exposed Ivanti CS appliances have been compromised, with the majority of compromised hosts falling within the United States. As cybercriminal interest in these Ivanti CS/PS vulnerabilities continues to grow, it is likely that so too will the number of attacks targeting them.

Observed Malicious Activities

Since January 15, 2024, Darktrace’s SOC and Threat Research team have observed a significant volume of malicious activities targeting customers’ Ivanti CS/PS appliances. Amongst the string of activities that were observed, the following threads were identified as salient:

  • Exploit validation activity
  • Exfiltration of system information
  • Delivery of C2 implant from AWS
  • Delivery of JavaScript credential stealer
  • SimpleHelp usage
  • Encrypted C2 on port 53
  • Delivery of cryptominer

Exploit Validation Activity

Malicious actors were observed using the out-of-band application security testing (OAST) services, Interactsh and Burp Collaborator, to validate exploits for CS/PS vulnerabilities. Malicious use of OAST services for exploit validation is common and has been seen in the early stages of previous campaigns targeting Ivanti systems [8]. In this case, the Interact[.]sh exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of 'oast[.]live', 'oast[.]site', 'oast[.]fun', 'oast[.]me', 'oast[.]online' and 'oast[.]pro'.  Burp Collaborator exploit tests were evidenced by CS/PS appliances making GET requests with a cURL User-Agent header to subdomains of ‘collab.urmcyber[.]xyz’ and ‘dnslog[.]store’.

Figure 1: Event Log showing a CS/PS appliance contacting an 'oast[.]pro' endpoint.
Figure 2: Event Log showing a CS/PS appliance contacting a 'collab.urmcyber[.]xyz' endpoint.
Figure 3: Packet capture (PCAP) of an Interactsh GET request.
Figure 4: PCAP of a Burp Collaborator GET request.

Exfiltration of System Information

The majority of compromised CS/PS appliances identified by Darktrace were seen using cURL to transfer hundreds of MBs of data to the external endpoint, 139.180.194[.]132. This activity appeared to be related to a threat actor attempting to exfiltrate system-related information from CS/PS appliances. These data transfers were carried out via HTTP on ports 443 and 80, with the Target URIs ‘/hello’ and ‘/helloq’ being seen in the relevant HTTP POST requests. The files sent over these data transfers were ‘.dat’ and ‘.sys’ files with what seems to be the public IP address of the targeted appliance appearing in each file’s name.

Figure 5: Event Log shows a CS/PS appliance making a POST request to 139.180.194[.]132 whilst simultaneously receiving connections from suspicious external endpoints.
Figure 6: PCAP of a POST request to 139.180.194[.]132.

Delivery of Command-and-Control (C2) implant from Amazon Web Services (AWS)

In many of the compromises observed by Darktrace, the malicious actor in question was observed delivering likely Rust-based ELF payloads to the CS/PS appliance from the AWS endpoints, archivevalley-media.s3.amazonaws[.]com, abode-dashboard-media.s3.ap-south-1.amazonaws[.]com, shapefiles.fews.net.s3.amazonaws[.]com, and blooming.s3.amazonaws[.]com. In one particular case, these downloads were immediately followed by the delivery of an 18 MB payload (likely a C2 implant) from the AWS endpoint, be-at-home.s3.ap-northeast-2.amazonaws[.]com, to the CS/PS appliance. Post-delivery, the implant seems to have initiated SSL beaconing connections to the external host, music.farstream[.]org. Around this time, Darktrace also observed the actor initiating port scanning and SMB enumeration activities from the CS/PS appliance, likely in preparation for moving laterally through the network.

Figure 7: Advanced Search logs showing a CS/PS appliance beaconing to music.farstream[.]org after downloading several payloads from AWS.

Delivery of JavaScript credential stealer

In a small number of observed cases, Darktrace observed malicious actors delivering what appeared to be a JavaScript credential harvester to targeted CS/PS appliances. The relevant JavaScript code contains instructions to send login credentials to likely compromised websites. In one case, the website, www.miltonhouse[.]nl, appeared in the code snippet, and in another, the website, cpanel.netbar[.]org, was observed. Following the delivery of this JavaScript code, HTTPS connections were observed to these websites.  This likely credential harvester appears to strongly resemble the credential stealer observed by Mandiant (dubbed ‘WARPWIRE’) in UNC5221 compromises and the credential stealer observed by Veloxity in UTA0178 compromises.

Figure 8: PCAP of ‘/3.js’ GET request for JavaScript credential harvester.
Figure 9: Snippet of response to '/3.js’ GET request.
Figure 10: PCAP of ‘/auth.js’ GET request for JavaScript credential harvester.
Figure 11: Snippet of response to '/auth.js’ GET request.
Figure 12: Advanced Search logs showing VPN-connected devices sending data to www.miltonhouse[.]nl after the Ivanti CS appliance received the JavaScript code.

The usage of this JavaScript credential harvester did not occur in isolation, but rather appears to have occurred as part of a chain of activity involving several further steps. The delivery of the ‘www.miltonhouse[.]nl’ JavaScript stealer seems to have occurred as a step in the following attack chain:  

1. Ivanti CS/PS appliance downloads a 8.38 MB ELF file over HTTP (with Target URI ‘/revsocks_linux_amd64’) from 188.116.20[.]38

2. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8444 to 185.243.112[.]245, with several MBs of data being exchanged

3. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.txt’) from 188.116.20[.]38

4. Ivanti CS/PS appliance downloads a 1.53 ELF MB file over HTTP (with Target URI ‘/aparche2’) from 91.92.240[.]113

5. Ivanti CS/PS appliance downloads a 4.5 MB ELF file over HTTP (with Target URI ‘/agent’) from 91.92.240[.]113

6. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

7. Ivanti CS/PS appliance downloads Javascript credential harvester over HTTP (with Target URI ‘/auth.js’) from 91.92.240[.]113

8. Ivanti CS/PS appliance downloads a Perl script over HTTP (with Target URI ‘/login.cgi’) from 91.92.240[.]113

9. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 91.92.240[.]71, with several MBs of data being exchanged

10. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]215, with several MBs of data being exchanged

11. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 8080 to 91.92.240[.]113, with several MBs of data being exchanged

12. Ivanti CS/PS appliance makes a long SSL connection (JA3 client fingerprint: 19e29534fd49dd27d09234e639c4057e) over port 11601 to 45.9.149[.]112, with several MBs of data being exchanged  

These long SSL connections likely represent a malicious actor creating reverse shells from the targeted CS/PS appliance to their C2 infrastructure. Whilst it is not certain that these behaviors are part of the same attack chain, the similarities between them (such as the Target URIs, the JA3 client fingerprint and the use of port 11601) seem to suggest a link.  

Figure 13: Advanced Search logs showing a chain of malicious behaviours from a CS/PS appliance.
Figure 14: Advanced Search data showing the JA3 client fingerprint ‘19e29534fd49dd27d09234e639c4057e’ exclusively appearing in the aforementioned, long SSL connections from the targeted CS/PS appliance.
Figure 15: PCAP of ‘/login.txt’ GET request for a Perl script.
Figure 16: PCAP of ‘/login.cgi’ GET request for a Pearl script.

SimpleHelp Usage

After gaining a foothold on vulnerable CS/PS appliances, certain actors attempted to deepen their foothold within targeted networks. In several cases, actors were seen using valid account credentials to pivot over RDP from the vulnerable CS/PS appliance to other internal systems. Over these RDP connections, the actors appear to have installed the remote support tool, SimpleHelp, onto targeted internal systems, as evidenced by these systems’ subsequent HTTP requests. In one of the observed cases, a lateral movement target downloaded a 7.33 MB executable file over HTTP (Target URI: /ta.dat; User-Agent header: Microsoft BITS/7.8) from 45.9.149[.]215 just before showing signs of SimpleHelp usage. The apparent involvement of 45.9.149[.]215 in these SimpleHelp threads may indicate a connection between them and the credential harvesting thread outlined above.

Figure 17: Advanced Search logs showing an internal system making SimpleHelp-indicating HTTP requests immediately after receiving large volumes of data over RDP from an CS/PS appliance.
Figure 18: PCAP of a SimpleHelp-related GET request.

Encrypted C2 over port 53

In a handful of the recently observed CS/PS compromises, Darktrace identified malicious actors dropping a 16 MB payload which appears to use SSL-based C2 communication on port 53. C2 communication on port 53 is a commonly used attack method, with various malicious payloads, including Cobalt Strike DNS, being known to tunnel C2 communications via DNS requests on port 53. Encrypted C2 communication on port 53, however, is less common. In the cases observed by Darktrace, payloads were downloaded from 103.13.28[.]40 and subsequently reached back out to 103.13.28[.]40 over SSL on port 53.

Figure 19: PCAP of a ‘/linb64.png’ GET request.
Figure 20: Advanced Search logs showing a CS/PS appliance making SSL conns over port 53 to 103.13.28[.]40 immediately after downloading a 16 MB payload from 103.13.28[.]40.

Delivery of cryptominer

As is often the case, financially motivated actors also appeared to have sought to exploit the Ivanti appliances, with actors observed exploiting CS/PS appliances to deliver cryptomining malware. In one case, Darktrace observed an actor installing a Monero cryptominer onto a vulnerable CS/PS appliance, with the miner being downloaded via HTTP on port 8089 from 192.252.183[.]116.

Figure 21: PCAP of GET request for a Bash script which appeared to kill existing cryptominers.
Figure 22: PCAP of a GET request for a JSON config file – returned config file contains mining details such as ‘auto.3pool[.]org:19999’.
Figure 23: PCAP of a GET request for an ELF payload

Potential Pre-Ransomware Post-Compromise Activity

In one observed case, a compromise of a customer’s CS appliance was followed by an attacker using valid account credentials to connect to the customer’s CS VPN subnet. The attacker used these credentials to pivot to other parts of the customer’s network, with tools and services such as PsExec, Windows Management Instrumentation (WMI) service, and Service Control being abused to facilitate the lateral movement. Other Remote Monitoring and Management (RMM) tools, such as AnyDesk and ConnectWise Control (previously known as ScreenConnect), along with certain reconnaissance tools such as Netscan, Nmap, and PDQ, also appear to have been used. The attacker subsequently exfiltrated data (likely via Rclone) to the file storage service, put[.]io, potentially in preparation for a double extortion ransomware attack. However, at the time of writing, it was not clear what the relation was between this activity and the CS compromise which preceded it.

Darktrace Coverage

Darktrace has observed malicious actors carrying out a variety of post-exploitation activities on Internet-exposed CS/PS appliances, ranging from data exfiltration to the delivery of C2 implants and crypto-miners. These activities inevitably resulted in CS/PS appliances displaying patterns of network traffic greatly deviating from their typical “patterns of life”.

Darktrace DETECT™ identified these deviations and generated a variety of model breaches (i.e, alerts) highlighting the suspicious activity. Darktrace’s Cyber AI Analyst™ autonomously investigated the ongoing compromises and connected the individual model breaches, viewing them as related incidents rather than isolated events. When active and configured in autonomous response mode, Darktrace RESPOND™ containted attackers’ operations by autonomously blocking suspicious patterns of network traffic as soon as they were identified by Darktrace DETECT.

The exploit validation activities carried out by malicious actors resulted in CS/PS servers making HTTP connections with cURL User-Agent headers to endpoints associated with OAST services such as Interactsh and Burp Collaborator. Darktrace DETECT recognized that this HTTP activity was suspicious for affected devices, causing the following models to breach:

  • Compromise / Possible Tunnelling to Bin Services
  • Device / Suspicious Domain
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent
Figure 24: Event Log showing a CS/PS appliance breaching models due to its Interactsh HTTP requests.
Figure 25: Cyber AI Analyst Incident Event highlighting a CS/PS appliance's Interactsh connections.

Malicious actors’ uploads of system information to 139.180.194[.]132 resulted in cURL POST requests being sent from the targeted CS/PS appliances. Darktrace DETECT judged these HTTP POST requests to be anomalous, resulting in combinations of the following model breaches:

  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Unusual External Data to New Endpoint
  • Anomalous Connection / Data Sent to Rare Domain
Figure 26: Event Log showing the creation of a model breach due to a CS/PS appliance’s POST request to 139.180.194[.]132.
Figure 27: Cyber AI Analyst Incident Event highlighting POST requests from a CS/PS appliance to 139.180.194[.]132.

The installation of AWS-hosted C2 implants onto vulnerable CS/PS appliances resulted in beaconing connections which Darktrace DETECT recognized as anomalous, leading to the following model breaches:

  • Compromise / Beacon to Young Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score

When enabled in autonomous response mode, Darktrace RESPOND was able to follow up these detections by blocking affected devices from connecting externally over port 80, 443, 445 or 8081, effectively shutting down the attacker’s beaconing activity.

Figure 28: Event Log showing the creation of a model breach and the triggering of an autonomous RESPOND action due to a CS/PS appliance's beaconing connections.

The use of encrypted C2 on port 53 by malicious actors resulted in CS/PS appliances making SSL connections over port 53. Darktrace DETECT judged this port to be uncommon for SSL traffic and consequently generated the following model breach:

  • Anomalous Connection / Application Protocol on Uncommon Port
Figure 29: Cyber AI Analyst Incident Event highlighting a ‘/linb64.png’ GET request from a CS/PS appliance to 103.13.28[.]40.
Figure 30: Event Log showing the creation of a model breach due to CS/PS appliance’s external SSL connection on port 53.
Figure 31: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s SSL connections over port 53 to 103.13.28[.]40.

Malicious actors’ attempts to run cryptominers on vulnerable CS/PS appliances resulted in downloads of Bash scripts and JSON files from external endpoints rarely visited by the CS/PS appliances themselves or by neighboring systems. Darktrace DETECT identified these deviations in device behavior and generated the following model breaches:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download

Darktrace RESPOND, when configured to respond autonomously, was subsequently able to carry out a number of actions to contain the attacker’s activity. This included blocking all outgoing traffic on offending devices and enforcing a “pattern of life” on devices ensuring they had to adhere to expected network behavior.

Figure 32: Event Log showing the creation of model breaches and the triggering of autonomous RESPOND actions in response to a CS/PS appliance’s cryptominer download.
Figure 33: Cyber AI Analyst Incident Event highlighting a CS/PS appliance’s cryptominer download.

The use of RDP to move laterally and spread SimpleHelp to other systems resulted in CS/PS appliances using privileged credentials to initiate RDP sessions. These RDP sessions, and the subsequent traffic resulting from usage of SimpleHelp, were recognized by Darktrace DETECT as being highly out of character, prompting the following model breaches:

  • Anomalous Connection / Unusual Admin RDP Session
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Compromise / Suspicious HTTP Beacons to Dotted Quad
  • Anomalous File / Anomalous Octet Stream (No User Agent)
  • Anomalous Server Activity / Rare External from Server
Figure 34: Event Log showing the creation of a model breach due to a CS/PS appliance’s usage of an admin credential to RDP to another internal system.
Figure 35: Event Log showing the creation of model breaches due to SimpleHelp-HTTP requests from a device targeted for lateral movement.
Figure 36: Cyber AI Analyst Incident Event highlighting the SimpleHelp-indicating HTTP requests made by an internal system.

Conclusion

The recent widespread exploitation of Ivanti CS/PS is a stark reminder of the threat posed by malicious actors armed with exploits for Internet-facing assets.

Based on the telemetry available to Darktrace, a wide range of malicious activities were carried out against CS/PS appliances, likely via exploitation of the recently disclosed CVE-2023-46805 and CVE-2024-21887 vulnerabilities.

These activities include the usage of OAST services for exploit validation, the exfiltration of system information to 139.180.194[.]132, the delivery of AWS-hosted C2 implants, the delivery of JavaScript credential stealers, the usage of SimpleHelp, the usage of SSL-based C2 on port 53, and the delivery of crypto-miners. These activities are far from exhaustive, and many more activities will undoubtedly be uncovered as the situation develops and our understanding grows.

While there were no patches available at the time of writing, Ivanti stated that they were expected to be released shortly, with the “first version targeted to be available to customers the week of 22 January 2023 and the final version targeted to be available the week of 19 February” [9].

Fortunately for vulnerable customers, in their absence of patches Darktrace DETECT was able to identify and alert for anomalous network activity that was carried out by malicious actors who had been able to successfully exploit the Ivanti CS and PS vulnerabilities. While the activity that followed these zero-day vulnerabilities may been able to have bypass traditional security tools reliant upon existing threat intelligence and indicators of compromise (IoCs), Darktrace’s anomaly-based approach allows it to identify such activity based on the subtle deviations in a devices behavior that typically emerge as threat actors begin to work towards their goals post-compromise.

In addition to Darktrace’s ability to identify this type of suspicious behavior, its autonomous response technology, Darktrace RESPOND is able to provide immediate follow-up with targeted mitigative actions to shut down malicious activity on affected customer environments as soon as it is detected.

Credit to: Nahisha Nobregas, SOC Analyst, Emma Foulger, Principle Cyber Analyst, and the Darktrace Threat Research Team

Appendices

List of IoCs Possible IoCs:

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.3

-       curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7

Mid-high confidence IoCs:

-       http://139.180.194[.]132:443/hello

-       http://139.180.194[.]132:443/helloq

-       http://blooming.s3.amazonaws[.]com/Ea7fbW98CyM5O (SHA256 hash: 816754f6eaf72d2e9c69fe09dcbe50576f7a052a1a450c2a19f01f57a6e13c17)

-       http://abode-dashboard-media.s3.ap-south-1.amazonaws[.]com/kaffMm40RNtkg (SHA256 hash: 47ff0ae9220a09bfad2a2fb1e2fa2c8ffe5e9cb0466646e2a940ac2e0cf55d04)

-       http://archivevalley-media.s3.amazonaws[.]com/bbU5Yn3yayTtV (SHA256 hash: c7ddd58dcb7d9e752157302d516de5492a70be30099c2f806cb15db49d466026)

-       http://shapefiles.fews.net.s3.amazonaws[.]com/g6cYGAxHt4JC1 (SHA256 hash: c26da19e17423ce4cb4c8c47ebc61d009e77fc1ac4e87ce548cf25b8e4f4dc28)

-       http://be-at-home.s3.ap-northeast-2.amazonaws[.]com/2ekjMjslSG9uI

-       music.farstream[.]org  • 104.21.86[.]153 / 172.67.221[.]78

-       http://197.243.22[.]27/3.js

-       http://91.92.240[.]113/auth.js

-       www.miltonhouse[.]nl • 88.240.53[.]22

-       cpanel.netbar[.]org • 146.19.212[.]12

-       http://188.116.20[.]38/revsocks_linux_amd64

-       185.243.112[.]245:8444

-        http://188.116.20[.]38/login.txt

-       http://91.92.240[.]113/aparche2 (SHA256 hash: 9d11c3cf10b20ff5b3e541147f9a965a4e66ed863803c54d93ba8a07c4aa7e50)

-       http://91.92.240[.]113/agent (SHA256 hash: 7967def86776f36ab6a663850120c5c70f397dd3834f11ba7a077205d37b117f)

-       45.9.149[.]215:11601

-       45.9.149[.]112:11601

-       http://91.92.240[.]113/login.cgi

-       91.92.240[.]71:11601

-       91.92.240[.]113:8080

-       http://45.9.149[.]215/ta.dat (SHA256 hash: 4bcf1333b3ad1252d067014c606fb3a5b6f675f85c59b69ca45669d45468e923)

-       91.92.241[.]18

-       94.156.64[.]252

-       http://144.172.76[.]76/lin86

-       144.172.122[.]14:443

-       http://185.243.115[.]58:37586/

-       http://103.13.28[.]40/linb64.png

-       103.13.28[.]40:53

-       159.89.82[.]235:8081

-       http://192.252.183[.]116:8089/u/123/100123/202401/d9a10f4568b649acae7bc2fe51fb5a98.sh

-       http://192.252.183[.]116:8089/u/123/100123/202401/sshd

-       http://192.252.183[.]116:8089/u/123/100123/202401/31a5f4ceae1e45e1a3cd30f5d7604d89.json

-       http://103.27.110[.]83/module/client_amd64

-       http://103.27.110[.]83/js/bootstrap.min.js?UUID=...

-       http://103.27.110[.]83/js/jquery.min.js

-       http://95.179.238[.]3/bak

-       http://91.92.244[.]59:8080/mbPHenSdr6Cf79XDAcKEVA

-       31.220.30[.]244

-       http://172.245.60[.]61:8443/SMUkbpX-0qNtLGsuCIuffAOLk9ZEBCG7bIcB2JT6GA/

-       http://172.245.60[.]61/ivanti

-       http://89.23.107[.]155:8080/l-5CzlHWjkp23gZiVLzvUg

-       http://185.156.72[.]51:8080/h7JpYIZZ1-rrk98v3YEy6w

-       http://185.156.72[.]51:8080/8uSQsOTwFyEAsXVwbAJ2mA

-       http://185.156.72[.]51:8080/vuln

-       185.156.72[.]51:4440

-       185.156.72[.]51:8080

-       185.156.72[.]51:4433

-       185.156.72[.]51:4446

-       185.156.72[.]51:4445

-       http://185.156.72[.]51/set.py

-       185.156.72[.]51:7777

-       45.9.151[.]107:7070

-       185.195.59[.]74:7070

-       185.195.59[.]74:20958

-       185.195.59[.]74:34436

-       185.195.59[.]74:37464

-       185.195.59[.]74:41468    

References

[1] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[2] https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US

[3] https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulnerabilities-in-ivanti-connect-secure-vpn/

[4] https://www.mandiant.com/resources/blog/suspected-apt-targets-ivanti-zero-day

[5] https://www.greynoise.io/blog/ivanti-connect-secure-exploited-to-install-cryptominers

[6] https://www.volexity.com/blog/2024/01/18/ivanti-connect-secure-vpn-exploitation-new-observations/

[7] https://censys.com/the-mass-exploitation-of-ivanti-connect-secure/

[8] https://darktrace.com/blog/entry-via-sentry-analyzing-the-exploitation-of-a-critical-vulnerability-in-ivanti-sentry

[9] https://forums.ivanti.com/s/article/CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US  

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

OT

/

March 28, 2025

Darktrace Recognized as the Only Visionary in the 2025 Gartner® Magic Quadrant™ for CPS Protection Platforms

Default blog imageDefault blog image

We are thrilled to announce that Darktrace has been named the only Visionary in the inaugural Gartner® Magic Quadrant™ for Cyber-Physical Systems (CPS) Protection Platforms. We feel This recognition highlights Darktrace’s AI-driven approach to securing industrial environments, where conventional security solutions struggle to keep pace with increasing cyber threats.

A milestone for CPS security

It's our opinion that the first-ever Gartner Magic Quadrant for CPS Protection Platforms reflects a growing industry shift toward purpose-built security solutions for critical infrastructure. As organizations integrate IT, OT, and cloud-connected systems, the cyber risk landscape continues to expand. Gartner evaluated 17 vendors based on their Ability to Execute and Completeness of Vision, establishing a benchmark for security leaders looking to enhance cyber resilience in industrial environments.

We believe the Gartner recognition of Darktrace as the only Visionary reaffirms the platform’s ability to proactively defend against cyber risks through AI-driven anomaly detection, autonomous response, and risk-based security strategies. With increasingly sophisticated attacks targeting industrial control systems, organizations need a solution that continuously evolves to defend against both known and unknown threats.

AI-driven security for CPS environments

Securing CPS environments requires an approach that adapts to the dynamic nature of industrial operations. Traditional security tools rely on static signatures and predefined rules, leaving gaps in protection against novel and sophisticated threats. Darktrace / OT takes a different approach, leveraging Self-Learning AI to detect and neutralize threats in real time, even in air-gapped or highly regulated environments.

Darktrace / OT continuously analyzes network behaviors to establish a deep understanding of what is “normal” for each industrial environment. This enables it to autonomously identify deviations that signal potential cyber threats, providing early warning and proactive defense before attacks can disrupt operations. Unlike rule-based security models that require constant manual updates, Darktrace / OT improves with the environment, ensuring long-term resilience against emerging cyber risks.

Bridging the IT-OT security gap

A major challenge for organizations protecting CPS environments is the disconnect between IT and OT security. While IT security has traditionally focused on data

protection and compliance, OT security is driven by operational uptime and safety, leading to siloed security programs that leave critical gaps in visibility and response.

Darktrace / OT eliminates these silos by providing unified visibility across IT, OT, and IoT assets, ensuring that security teams have a complete picture of their attack surface. Its AI-driven approach enables cross-domain threat detection, recognizing risks that move laterally between IT and OT environments. By seamlessly integrating with existing security architectures, Darktrace / OT helps organizations close security gaps without disrupting industrial processes.

Proactive OT risk management and resilience

Beyond detection and response, Darktrace / OT strengthens organizations’ ability to manage cyber risk proactively. By mapping vulnerabilities to real-world attack paths, it prioritizes remediation actions based on actual exploitability and business impact, rather than relying on isolated CVE scores. This risk-based approach enables security teams to focus resources where they matter most, reducing overall exposure to cyber threats.

With autonomous threat response capabilities, Darktrace / OT not only identifies risks but also contains them in real time, preventing attackers from escalating intrusions. Whether mitigating ransomware, insider threats, or sophisticated nation-state attacks, Darktrace / OT ensures that industrial environments remain secure, operational, and resilient, no matter how threats evolve.

AI-powered incident response and SOC automation

Security teams are facing an overwhelming volume of alerts, making it difficult to prioritize threats and respond effectively. Darktrace / OT’s Cyber AI Analyst acts as a force multiplier for security teams by automating threat investigation, alert triage, and response actions. By mimicking the workflow of a human SOC analyst, Cyber AI Analyst provides contextual insights that accelerate incident response and reduce the manual workload on security teams.

With 24/7 autonomous monitoring, Darktrace / OT ensures that threats are continuously detected and investigated in real time. Whether facing ransomware, insider threats, or sophisticated nation-state attacks, organizations can rely on AI-driven security to contain threats before they disrupt operations.

Trusted by customers: Darktrace / OT recognized in Gartner Peer Insights

Source: Gartner Peer Insights (Oct 28th)

Beyond our recognition in the Gartner Magic Quadrant, we feel Darktrace / OT is one of the highest-rated CPS security solutions on Gartner Peer Insights, reflecting strong customer trust and validation. With a 4.9/5 overall rating and the highest "Willingness to Recommend" score among CPS vendors, organizations across critical infrastructure and industrial sectors recognize the impact of our AI-driven security approach. Source: Gartner Peer Insights (Oct 28th)

This strong customer endorsement underscores why leading enterprises trust Darktrace / OT to secure their CPS environments today and in the future.

Redefining the future of CPS security

It's our view that Darktrace’s recognition as the only Visionary in the Gartner Magic Quadrant for CPS Protection Platforms validates its leadership in next-generation industrial security. As cyber threats targeting critical infrastructure continue to rise, organizations must adopt AI-driven security solutions that can adapt, respond, and mitigate risks in real time.

We believe this recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems. This recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems.

® Download the full Gartner Magic Quadrant for CPS Protection Platforms

® Request a demo to see Darktrace OT in action.

Gartner, Magic Quadrant for CPS Protection Platforms , Katell Thielemann, Wam Voster, Ruggero Contu 12 February 2025

Gartner does not endorse any vendor, product or service depicted in its research publications and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner and Magic Quadrant and Peer Insights are a registered trademark, of Gartner, Inc. and/or its affiliates in the U.S. and internationally and are used herein with permission. All rights reserved. Gartner Peer Insights content consists of the opinions of individual end users based on their own experiences with the vendors listed on the platform, should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

AI

/

March 28, 2025

Survey Findings: AI Cybersecurity Priorities and Objectives in 2025

Default blog imageDefault blog image

AI is changing the cybersecurity field, both on the offensive and defensive sides. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is available now.  

Download the full report to explore these findings in depth

It is clear that security professionals know their field is changing fast, and that AI will continue to influence those changes. Our survey results show that they are aware that the rise of AI will require them to adopt new tools and learn to use them effectively. Still, they aren’t always certain about how to plan for the future, or what to invest in.

The top priorities of security stakeholders for improving their defenses against AI-powered threats include augmenting their existing tool stacks with AI-powered solutions and improving integration among their security tools.

Figure 1: Year-over-year changes to the priorities of securitystakeholders.

Increasing cybersecurity staff

As was also the case last year, security stakeholders are less interested in hiring additional staff than in adding new AI-powered tools onto their existing security stacks, with only with 11% (and only 8% of executives) planning to increase cybersecurity staff in 2025.

This suggests that leaders are looking for new methods to overcome talent resource shortages.

Adding AI-powered security tools to supplement existing solutions

Executives are particularly enthusiastic about adopting AI-driven tools. Within that goal, there is consensus about the qualities cyber professionals are looking for when purchasing new security capabilities or replacing existing products.

  • 87% of survey respondents prefer solutions that are part of a broader platform over individual point products

These results are similar to last year’s, where again, almost nine out of ten agreed that a platform-oriented security solution was more effective at stopping cyber threats than a collection of individual products.

  • 88% of survey respondents agree that the use of AI within the security stack is critical to freeing up time for security teams to become more proactive, compared to reactive

AI itself can contribute to this shift from reactive to proactive security, improving risk prioritization and automating preventative strategies like Attack Surface Management (ASM) and proactive exposure management.

  • 84% of survey respondents prefer defensive AI solutions that do not require the organization’s data to be shared externally

This preference may reflect increasing attention to the data privacy and security risks posed by generative AI (gen AI) adoption. It may also reflect growing awareness of data residency requirements and other restrictions that regulators are imposing.

Improving cybersecurity awareness training for end users

Based on the survey results, practitioners in SecOps are more interested in improving security awareness training.

This goal is not necessarily mutually exclusive from the addition of AI tools. For example, teams can leverage AI to build more effective security awareness training programs, and as gen AI tools are adopted, users will need to be taught about data privacy and associated security risks.

Looking towards the future

One conclusion we can draw from the attitudinal shifts from last year’s survey to this year’s: while hiring more security staff might be a nice-to-have, implementing AI-powered tools so that existing employees can work smarter is increasingly viewed as a must-have.

However, trending goals are not just about managing resources, whether headcount or AI investments, to keep up with workloads. Existing end users must also be trained to follow safe practices while using established and newly adopted tools.

Security professionals, including executives, SecOps, and every role in between, continue to shift their identified challenges and priorities as they gear up for the coming year in the Era of AI.

State of AI report

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI