Blog
/
Network
/
December 20, 2023

Ivanti Sentry Vulnerability | Analysis & Insights

Darktrace observed a critical vulnerability in Ivanti Sentry's cybersecurity. Learn how this almost become a huge threat and how we stopped it in its tracks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2023

In an increasingly interconnected digital landscape, the prevalence of critical vulnerabilities in internet-facing systems stands as an open invitation to malicious actors. These vulnerabilities serve as a near limitless resource, granting attackers a continually array of entry points into targeted networks.

In the final week of August 2023, Darktrace observed malicious actors validating exploits for one such critical vulnerability, likely the critical RCE vulnerability, CVE-2023-38035, on Ivanti Sentry servers within multiple customer networks. Shortly after these successful tests were carried out, malicious actors were seen delivering crypto-mining and reconnaissance tools onto vulnerable Ivanti Sentry servers.

Fortunately, Darktrace DETECT™ was able to identify this post-exploitation activity on the compromised servers at the earliest possible stage, allowing the customer security teams to take action against affected devices. In environments where Darktrace RESPOND™ was enabled in autonomous response mode, Darktrace was further able inhibit the identified post-exploitation activity and stop malicious actors from progressing towards their end goals.

Exploitation of Vulnerabilities in Ivanti Products

The software provider, Ivanti, offers a variety of widely used endpoint management, service management, and security solutions. In July and August 2023, the Norwegian cybersecurity company, Mnemonic, disclosed three vulnerabilities in Ivanti products [1]/[2]/[3]; two in Ivanti's endpoint management solution, Ivanti Endpoint Manager Mobile (EPMM) (formerly called 'MobileIron Core'), and one in Ivanti’s security gateway solution, Ivanti Sentry (formerly called 'MobileIron Sentry'):

CVE-2023-35078

  • CVSS Score: 10.0
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [4]/[5]/[6]
  • Vulnerability type: Authentication bypass

CVE-2023-35081

  • CVSS Score: 7.2
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [7]/[8]/[9]
  • Vulnerability type: Directory traversal

CVE-2023-38035

  • CVSS Score:
  • Affected Product: Ivanti Sentry
  • Details from Ivanti: [10]/[11]/[12]
  • Vulnerability type: Authentication bypass

At the beginning of August 2023, the Cybersecurity and Infrastructure Security Agency (CISA) and the Norwegian National Cyber Security Centre (NCSC-NO) provided details of advanced persistent threat (APT) activity targeting EPMM systems within Norwegian private sector and government networks via exploitation of CVE-2023-35078 combined with suspected exploitation of CVE-2023-35081.

In an article published in August 2023 [12], Ivanti disclosed that a very limited number of their customers had been subjected to exploitation of the Ivanti Sentry vulnerability, CVE-2023-38035, and on the August 22, 2023, CISA added the Ivanti Sentry vulnerability, CVE-2023-38035 to its ‘Known Exploited Vulnerabilities Catalogue’.  CVE-2023-38035 is a critical authentication bypass vulnerability affecting the System Manager Portal of Ivanti Sentry systems. The System Manager Portal, which is accessible by default on port 8433, is used for administration of the Ivanti Sentry system. Through exploitation of CVE-2023-38035, an unauthenticated actor with access to the System Manager Portal can achieve Remote Code Execution (RCE) on the underlying Ivanti Sentry system.

Observed Exploitation of CVE-2023-38035

On August 24, Darktrace observed Ivanti Sentry servers within several customer networks receiving successful SSL connections over port 8433 from the external endpoint, 34.77.65[.]112. The usage of port 8433 indicates that the System Manager Portal was accessed over the connections. Immediately after receiving these successful connections, Ivanti Sentry servers made GET requests over port 4444 to 34.77.65[.]112. The unusual string ‘Wget/1.14 (linux-gnu)’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, wget, was abused to initiate the requests.

Figure 1: Event Log data for an Ivanti Sentry system showing the device breaching a range of DETECT models after contacting 34.77.65[.]112.The suspicious behavior highlighted by DETECT was subsequently investigated by Darktrace’s Cyber AI Analyst™, which was able to weave together these separate behaviors into single incidents representing the whole attack chain.

Figure 2: AI Analyst Incident representing a chain of suspicious activities from an Ivanti Sentry server.

In cases where Darktrace RESPOND was enabled in autonomous response mode, RESPOND was able to automatically enforce the Ivanti Sentry server’s normal pattern of life, thus blocking further exploit testing.

Figure 3: Event Log for an Ivanti Sentry server showing the device receiving a RESPOND action immediately after trying to 34.77.65[.]112.

The GET requests to 34.77.65[.]112 were responded to with the following HTML document:

Figure 4: Snapshot of the HTML document returned by 34.77.65[.]112.

None of the links within this HTML document were functional. Furthermore, the devices’ downloads of these HTML documents do not appear to have elicited further malicious activities. These facts suggest that the observed 34.77.65[.]112 activities were representative of a malicious actor validating exploits (likely for CVE-2023-38035) on Ivanti Sentry systems.

Over the next 24 hours, these Ivanti Sentry systems received successful SSL connections over port 8433 from a variety of suspicious external endpoints, such as 122.161.66[.]161. These connections resulted in Ivanti Sentry systems making HTTP GET requests to subdomains of ‘oast[.]site’ and ‘oast[.]live’. Strings containing ‘curl’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, cURL, was abused to initiate the requests.

These ‘oast[.]site’ and ‘oast[.]live’ domains are used by the out-of-band application security testing (OAST) service, Interactsh. Malicious actors are known to abuse this service to carry out out-of-band (OOB) exploit testing. It, therefore, seems likely that these activities were also representative of a malicious actor validating exploits for CVE-2023-38035 on Ivanti Sentry systems.

Figure 5: Event Log for Ivanti Sentry system showing the device contacting an 'oast[.]site' endpoint after receiving connections from the suspicious, external endpoint 122.161.66[.]161.

The actors seen validating exploits for CVE-2023-38035 may have been conducting such activities in preparation for their own subsequent malicious activities. However, given the variety of attack chains which ensued from these exploit validation activities, it is also possible that they were carried out by Initial Access Brokers (IABs) The activities which ensued from exploit validation activities identified by Darktrace fell into two categories: internal network reconnaissance and cryptocurrency mining.

Reconnaissance Activities

In one of the reconnaissance cases, immediately after receiving successful SSL connections over port 8443 from the external endpoints 190.2.131[.]204 and 45.159.248[.]179, an Ivanti Sentry system was seen making a long SSL connection over port 443 to 23.92.29[.]148, and making wget GET requests over port 4444 with the Target URIs '/ncat' and ‘/TxPortMap’ to the external endpoints, 45.86.162[.]147 and 195.123.240[.]183.  

Figure 6: Event Log data for an Ivanti Sentry system showing the device making connections to the external endpoints, 45.86.162[.]147, 23.92.29[.]148, and 195.123.240[.]183, immediately after receiving connections from rare external endpoints.

The Ivanti Sentry system then went on to scan for open SMB ports on systems within the internal network. This activity likely resulted from an attacker dropping a port scanning utility on the vulnerable Ivanti Sentry system.

Figure 7: Event Log data for an Ivanti Sentry server showing the device breaching several DETECT models after downloading a port scanning tool from 195.123.240[.]183.

In another reconnaissance case, Darktrace observed multiple wget HTTP requests with Target URIs such as ‘/awp.tar.gz’ and ‘/resp.tar.gz’ to a suspicious, external server (78.128.113[.]130).  Shortly after making these requests, the Ivanti Sentry system started to scan for open SMB ports and to respond to LLMNR queries from other internal devices. These behaviors indicate that the server may have installed an LLMNR poisoning tool, such as Responder. The Ivanti Sentry server also went on to conduct further information-gathering activities, such as LDAP reconnaissance, HTTP-based vulnerability scanning, HTTP-based password searching, and RDP port scanning.

Figure 8: Event Log data for an Ivanti Sentry system showing the device making connections to 78.128.113[.]130, scanning for an open SMB port on internal endpoints, and responding to LLMNR queries from internal endpoints.

In cases where Darktrace RESPOND was active, reconnaissance activities resulted in RESPOND enforcing the Ivanti Sentry server’s pattern of life.

Figure 9: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its SMB port scanning activity.
Figure 10: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its LDAP reconnaissance activity.

Crypto-Mining Activities

In one of the cryptomining cases, Darktrace detected an Ivanti Sentry server making SSL connections to aelix[.]xyz and mining pool endpoints after receiving successful SSL connections over port 8443 from the external endpoint, 140.228.24[.]160.

Figure 11: Event Log data for an Ivanti Sentry system showing the device contacting aelix[.]xyz and mining pool endpoints immediately after receiving connections from the external endpoint, 140.228.24[.]160.

In a cryptomining case on another customer’s network, an Ivanti Sentry server was seen making GET requests indicative of Kinsing malware infection. These requests included wget GET requests to 185.122.204[.]197 with the Target URIs ‘/unk.sh’ and ‘/se.sh’ and a combination of GET and POST requests to 185.221.154[.]208 with the User-Agent header ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36’ and the Target URIs, ‘/mg’, ‘/ki’, ‘/get’, ‘/h2’, ‘/ms’, and ‘/mu’. These network-based artefacts have been observed in previous Kinsing infections [13].

Figure 12: Event Log data for an Ivanti Sentry system showing the device displaying likely Kinsing C2 activity.

On customer environments where RESPOND was active, Darktrace was able to take swift autonomous action by blocking cryptomining connection attempts to malicious command-and-control (C2) infrastructure, in this case Kinsing servers.

Figure 13: Event Log data for an Ivanti Sentry server showing the device receiving a RESPOND action after attempting to contact Kinsing C2 infrastructure.

Fortunately, due to Darktrace DETECT+RESPOND prompt identification and targeted actions against these emerging threats, coupled with remediating steps taken by affected customers’ security teams, neither the cryptocurrency mining activities nor the network reconnaissance activities led to significant disruption.  

Figure 14: Timeline of observed malicious activities.

Conclusion The inevitable presence of critical vulnerabilities in internet-facing systems underscores the perpetual challenge of defending against malicious intrusions. The near inexhaustible supply of entry routes into organizations’ networks available to malicious actors necessitates a more proactive and vigilant approach to network security.

While it is, of course, essential for organizations to secure their digital environments through the regular patching of software and keeping abreast of developing vulnerabilities that could impact their network, it is equally important to have a safeguard in place to mitigate against attackers who do manage to exploit newly discovered vulnerabilities.

In the case of Ivanti Sentry, Darktrace observed malicious actors validating exploits against affected servers on customer networks just a few days after the public disclosure of the critical vulnerability.  This activity was followed up by a variety of malicious and disruptive, activities including cryptocurrency mining and internal network reconnaissance.

Darktrace DETECT immediately detected post-exploitation activities on compromised Ivanti Sentry servers, enabling security teams to intervene at the earliest possible stage. Darktrace RESPOND, when active, autonomously inhibited detected post-exploitation activities. These DETECT detections, along with their accompanying RESPOND interventions, prevented malicious actors from being able to progress further towards their likely harmful objectives.

Credit to Sam Lister, Senior Cyber Analyst, and Trent Kessler, SOC Analyst  

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

  • Exploit Public-Facing Application (T1190)

Credential Access techniques:

  • Unsecured Credentials: Credentials In Files (T1552.001)
  • Adversary-in-the-Middle: LLMNR/NBT-NS Poisoning and SMB Relay (T1557.001)

Discovery

  • Network Service Discovery (T1046)
  • Remote System Discovery (T1018)
  • Account Discovery: Domain Account (T1087.002)

Command and Control techniques:

  • Application Layer Protocol: Web Protocols (T1071.001)
  • Ingress Tool Transfer (T1105)
  • Non-Standard Port (T1571)
  • Encrypted Channel: Asymmetric Cryptography (T1573.002)

Impact techniques

  • Resource Hijacking (T1496)
List of IoCs

Exploit testing IoCs:

·      34.77.65[.]112

·      Wget/1.14 (linux-gnu)

·      cjjovo7mhpt7geo8aqlgxp7ypod6dqaiz.oast[.]site • 178.128.16[.]97

·      curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.27.1 zlib/1.2.3 libidn/1.18 libssh2/1.4.2

·      cjk45q1chpqflh938kughtrfzgwiofns3.oast[.]site • 178.128.16[.]97

·      curl/7.29.0

Kinsing-related IoCs:

·      185.122.204[.]197

·      /unk.sh

·      /se.sh

·      185.221.154[.]208

·      185.221.154[.]208

·      45.15.158[.]124

·      Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36

·      /mg

·      /ki

·      /get

·      /h2

·      /ms

·      /mu

·      vocaltube[.]ru • 185.154.53[.]140

·      92.255.110[.]4

·      194.87.254[.]160

Responder-related IoCs:

·      78.128.113[.]130

·      78.128.113[.]34

·      /awp.tar.gz

·      /ivanty

·      /resp.tar.gz

Crypto-miner related IoCs:

·      140.228.24[.]160

·      aelix[.]xyz • 104.21.60[.]147 / 172.67.197[.]200

·      c8446f59cca2149cb5f56ced4b448c8d (JA3 client fingerprint)

·      b5eefe582e146aed29a21747a572e11c (JA3 client fingerprint)

·      pool.supportxmr[.]com

·      xmr.2miners[.]com

·      xmr.2miners[.]com

·      monerooceans[.]stream

·      xmr-eu2.nanopool[.]org

Port scanner-related IoCs:

·      122.161.66[.]161

·      192.241.235[.]32

·      45.86.162[.]147

·      /ncat

·      Wget/1.14 (linux-gnu)

·      45.159.248[.]179

·      142.93.115[.]146

·      23.92.29[.]148

·      /TxPortMap

·      195.123.240.183

·      6935a8d379e086ea1aed159b8abcb0bc8acf220bd1cbc0a84fd806f14014bca7 (SHA256 hash of downloaded file)

Darktrace DETECT Model Breaches

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Device / New User Agent

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Device / New User Agent and New IP

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / Callback on Web Facing Device

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Large Number of Suspicious Failed Connections

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Beacon for 4 Days

·      Compromise / Agent Beacon (Short Period)

·      Device / Large Number of Model Breaches

·      Anomalous Server Activity / Rare External from Server

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Monero Mining

·      Compromise / High Priority Crypto Currency Mining

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Device / Internet Facing Device with High Priority Alert

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Unusual LDAP Bind and Search Activity

·      Compliance / Vulnerable Name Resolution

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / New User Agent To Internal Server

·      Anomalous Connection / Suspicious HTTP Activity

·      Anomalous Connection / Unusual Internal Connections

·      Anomalous Connection / Suspicious HTTP Activity

·      Device / RDP Scan

·      Device / Large Number of Model Breaches

·      Compromise / Beaconing Activity To External Rare

·      Compromise / Beacon to Young Endpoint

·      Anomalous Connection / Suspicious HTTP Activity

·      Compromise / Suspicious Internal Use Of Web Protocol

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Internet Facing System File Download

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Initial Breach Chain Compromise

References

[1] https://www.mnemonic.io/resources/blog/ivanti-endpoint-manager-mobile-epmm-authentication-bypass-vulnerability/
[2] https://www.mnemonic.io/resources/blog/threat-advisory-remote-file-write-vulnerability-in-ivanti-epmm/
[3] https://www.mnemonic.io/resources/blog/threat-advisory-remote-code-execution-vulnerability-in-ivanti-sentry/
[4] https://www.ivanti.com/blog/cve-2023-35078-new-ivanti-epmm-vulnerability
[5] https://forums.ivanti.com/s/article/CVE-2023-35078-Remote-unauthenticated-API-access-vulnerability?language=en_US
[6] https://forums.ivanti.com/s/article/KB-Remote-unauthenticated-API-access-vulnerability-CVE-2023-35078?language=en_US
[7] https://www.ivanti.com/blog/cve-2023-35081-new-ivanti-epmm-vulnerability
[8] https://forums.ivanti.com/s/article/CVE-2023-35081-Arbitrary-File-Write?language=en_US
[9] https://forums.ivanti.com/s/article/KB-Arbitrary-File-Write-CVE-2023-35081?language=en_US
[10] https://www.ivanti.com/blog/cve-2023-38035-vulnerability-affecting-ivanti-sentry
[11] https://forums.ivanti.com/s/article/CVE-2023-38035-API-Authentication-Bypass-on-Sentry-Administrator-Interface?language=en_US
[12] https://forums.ivanti.com/s/article/KB-API-Authentication-Bypass-on-Sentry-Administrator-Interface-CVE-2023-38035?language=en_US
[13] https://isc.sans.edu/diary/Your+Business+Data+and+Machine+Learning+at+Risk+Attacks+Against+Apache+NiFi/29900

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

AI

/

December 8, 2025

Simplifying Cross Domain Investigations

simplifying cross domain thraetsDefault blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor

Blog

/

Network

/

December 5, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Isabel Evans
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI