Blog
/
Network
/
December 20, 2023

Ivanti Sentry Vulnerability | Analysis & Insights

Darktrace observed a critical vulnerability in Ivanti Sentry's cybersecurity. Learn how this almost become a huge threat and how we stopped it in its tracks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2023

In an increasingly interconnected digital landscape, the prevalence of critical vulnerabilities in internet-facing systems stands as an open invitation to malicious actors. These vulnerabilities serve as a near limitless resource, granting attackers a continually array of entry points into targeted networks.

In the final week of August 2023, Darktrace observed malicious actors validating exploits for one such critical vulnerability, likely the critical RCE vulnerability, CVE-2023-38035, on Ivanti Sentry servers within multiple customer networks. Shortly after these successful tests were carried out, malicious actors were seen delivering crypto-mining and reconnaissance tools onto vulnerable Ivanti Sentry servers.

Fortunately, Darktrace DETECT™ was able to identify this post-exploitation activity on the compromised servers at the earliest possible stage, allowing the customer security teams to take action against affected devices. In environments where Darktrace RESPOND™ was enabled in autonomous response mode, Darktrace was further able inhibit the identified post-exploitation activity and stop malicious actors from progressing towards their end goals.

Exploitation of Vulnerabilities in Ivanti Products

The software provider, Ivanti, offers a variety of widely used endpoint management, service management, and security solutions. In July and August 2023, the Norwegian cybersecurity company, Mnemonic, disclosed three vulnerabilities in Ivanti products [1]/[2]/[3]; two in Ivanti's endpoint management solution, Ivanti Endpoint Manager Mobile (EPMM) (formerly called 'MobileIron Core'), and one in Ivanti’s security gateway solution, Ivanti Sentry (formerly called 'MobileIron Sentry'):

CVE-2023-35078

  • CVSS Score: 10.0
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [4]/[5]/[6]
  • Vulnerability type: Authentication bypass

CVE-2023-35081

  • CVSS Score: 7.2
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [7]/[8]/[9]
  • Vulnerability type: Directory traversal

CVE-2023-38035

  • CVSS Score:
  • Affected Product: Ivanti Sentry
  • Details from Ivanti: [10]/[11]/[12]
  • Vulnerability type: Authentication bypass

At the beginning of August 2023, the Cybersecurity and Infrastructure Security Agency (CISA) and the Norwegian National Cyber Security Centre (NCSC-NO) provided details of advanced persistent threat (APT) activity targeting EPMM systems within Norwegian private sector and government networks via exploitation of CVE-2023-35078 combined with suspected exploitation of CVE-2023-35081.

In an article published in August 2023 [12], Ivanti disclosed that a very limited number of their customers had been subjected to exploitation of the Ivanti Sentry vulnerability, CVE-2023-38035, and on the August 22, 2023, CISA added the Ivanti Sentry vulnerability, CVE-2023-38035 to its ‘Known Exploited Vulnerabilities Catalogue’.  CVE-2023-38035 is a critical authentication bypass vulnerability affecting the System Manager Portal of Ivanti Sentry systems. The System Manager Portal, which is accessible by default on port 8433, is used for administration of the Ivanti Sentry system. Through exploitation of CVE-2023-38035, an unauthenticated actor with access to the System Manager Portal can achieve Remote Code Execution (RCE) on the underlying Ivanti Sentry system.

Observed Exploitation of CVE-2023-38035

On August 24, Darktrace observed Ivanti Sentry servers within several customer networks receiving successful SSL connections over port 8433 from the external endpoint, 34.77.65[.]112. The usage of port 8433 indicates that the System Manager Portal was accessed over the connections. Immediately after receiving these successful connections, Ivanti Sentry servers made GET requests over port 4444 to 34.77.65[.]112. The unusual string ‘Wget/1.14 (linux-gnu)’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, wget, was abused to initiate the requests.

Figure 1: Event Log data for an Ivanti Sentry system showing the device breaching a range of DETECT models after contacting 34.77.65[.]112.The suspicious behavior highlighted by DETECT was subsequently investigated by Darktrace’s Cyber AI Analyst™, which was able to weave together these separate behaviors into single incidents representing the whole attack chain.

Figure 2: AI Analyst Incident representing a chain of suspicious activities from an Ivanti Sentry server.

In cases where Darktrace RESPOND was enabled in autonomous response mode, RESPOND was able to automatically enforce the Ivanti Sentry server’s normal pattern of life, thus blocking further exploit testing.

Figure 3: Event Log for an Ivanti Sentry server showing the device receiving a RESPOND action immediately after trying to 34.77.65[.]112.

The GET requests to 34.77.65[.]112 were responded to with the following HTML document:

Figure 4: Snapshot of the HTML document returned by 34.77.65[.]112.

None of the links within this HTML document were functional. Furthermore, the devices’ downloads of these HTML documents do not appear to have elicited further malicious activities. These facts suggest that the observed 34.77.65[.]112 activities were representative of a malicious actor validating exploits (likely for CVE-2023-38035) on Ivanti Sentry systems.

Over the next 24 hours, these Ivanti Sentry systems received successful SSL connections over port 8433 from a variety of suspicious external endpoints, such as 122.161.66[.]161. These connections resulted in Ivanti Sentry systems making HTTP GET requests to subdomains of ‘oast[.]site’ and ‘oast[.]live’. Strings containing ‘curl’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, cURL, was abused to initiate the requests.

These ‘oast[.]site’ and ‘oast[.]live’ domains are used by the out-of-band application security testing (OAST) service, Interactsh. Malicious actors are known to abuse this service to carry out out-of-band (OOB) exploit testing. It, therefore, seems likely that these activities were also representative of a malicious actor validating exploits for CVE-2023-38035 on Ivanti Sentry systems.

Figure 5: Event Log for Ivanti Sentry system showing the device contacting an 'oast[.]site' endpoint after receiving connections from the suspicious, external endpoint 122.161.66[.]161.

The actors seen validating exploits for CVE-2023-38035 may have been conducting such activities in preparation for their own subsequent malicious activities. However, given the variety of attack chains which ensued from these exploit validation activities, it is also possible that they were carried out by Initial Access Brokers (IABs) The activities which ensued from exploit validation activities identified by Darktrace fell into two categories: internal network reconnaissance and cryptocurrency mining.

Reconnaissance Activities

In one of the reconnaissance cases, immediately after receiving successful SSL connections over port 8443 from the external endpoints 190.2.131[.]204 and 45.159.248[.]179, an Ivanti Sentry system was seen making a long SSL connection over port 443 to 23.92.29[.]148, and making wget GET requests over port 4444 with the Target URIs '/ncat' and ‘/TxPortMap’ to the external endpoints, 45.86.162[.]147 and 195.123.240[.]183.  

Figure 6: Event Log data for an Ivanti Sentry system showing the device making connections to the external endpoints, 45.86.162[.]147, 23.92.29[.]148, and 195.123.240[.]183, immediately after receiving connections from rare external endpoints.

The Ivanti Sentry system then went on to scan for open SMB ports on systems within the internal network. This activity likely resulted from an attacker dropping a port scanning utility on the vulnerable Ivanti Sentry system.

Figure 7: Event Log data for an Ivanti Sentry server showing the device breaching several DETECT models after downloading a port scanning tool from 195.123.240[.]183.

In another reconnaissance case, Darktrace observed multiple wget HTTP requests with Target URIs such as ‘/awp.tar.gz’ and ‘/resp.tar.gz’ to a suspicious, external server (78.128.113[.]130).  Shortly after making these requests, the Ivanti Sentry system started to scan for open SMB ports and to respond to LLMNR queries from other internal devices. These behaviors indicate that the server may have installed an LLMNR poisoning tool, such as Responder. The Ivanti Sentry server also went on to conduct further information-gathering activities, such as LDAP reconnaissance, HTTP-based vulnerability scanning, HTTP-based password searching, and RDP port scanning.

Figure 8: Event Log data for an Ivanti Sentry system showing the device making connections to 78.128.113[.]130, scanning for an open SMB port on internal endpoints, and responding to LLMNR queries from internal endpoints.

In cases where Darktrace RESPOND was active, reconnaissance activities resulted in RESPOND enforcing the Ivanti Sentry server’s pattern of life.

Figure 9: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its SMB port scanning activity.
Figure 10: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its LDAP reconnaissance activity.

Crypto-Mining Activities

In one of the cryptomining cases, Darktrace detected an Ivanti Sentry server making SSL connections to aelix[.]xyz and mining pool endpoints after receiving successful SSL connections over port 8443 from the external endpoint, 140.228.24[.]160.

Figure 11: Event Log data for an Ivanti Sentry system showing the device contacting aelix[.]xyz and mining pool endpoints immediately after receiving connections from the external endpoint, 140.228.24[.]160.

In a cryptomining case on another customer’s network, an Ivanti Sentry server was seen making GET requests indicative of Kinsing malware infection. These requests included wget GET requests to 185.122.204[.]197 with the Target URIs ‘/unk.sh’ and ‘/se.sh’ and a combination of GET and POST requests to 185.221.154[.]208 with the User-Agent header ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36’ and the Target URIs, ‘/mg’, ‘/ki’, ‘/get’, ‘/h2’, ‘/ms’, and ‘/mu’. These network-based artefacts have been observed in previous Kinsing infections [13].

Figure 12: Event Log data for an Ivanti Sentry system showing the device displaying likely Kinsing C2 activity.

On customer environments where RESPOND was active, Darktrace was able to take swift autonomous action by blocking cryptomining connection attempts to malicious command-and-control (C2) infrastructure, in this case Kinsing servers.

Figure 13: Event Log data for an Ivanti Sentry server showing the device receiving a RESPOND action after attempting to contact Kinsing C2 infrastructure.

Fortunately, due to Darktrace DETECT+RESPOND prompt identification and targeted actions against these emerging threats, coupled with remediating steps taken by affected customers’ security teams, neither the cryptocurrency mining activities nor the network reconnaissance activities led to significant disruption.  

Figure 14: Timeline of observed malicious activities.

Conclusion The inevitable presence of critical vulnerabilities in internet-facing systems underscores the perpetual challenge of defending against malicious intrusions. The near inexhaustible supply of entry routes into organizations’ networks available to malicious actors necessitates a more proactive and vigilant approach to network security.

While it is, of course, essential for organizations to secure their digital environments through the regular patching of software and keeping abreast of developing vulnerabilities that could impact their network, it is equally important to have a safeguard in place to mitigate against attackers who do manage to exploit newly discovered vulnerabilities.

In the case of Ivanti Sentry, Darktrace observed malicious actors validating exploits against affected servers on customer networks just a few days after the public disclosure of the critical vulnerability.  This activity was followed up by a variety of malicious and disruptive, activities including cryptocurrency mining and internal network reconnaissance.

Darktrace DETECT immediately detected post-exploitation activities on compromised Ivanti Sentry servers, enabling security teams to intervene at the earliest possible stage. Darktrace RESPOND, when active, autonomously inhibited detected post-exploitation activities. These DETECT detections, along with their accompanying RESPOND interventions, prevented malicious actors from being able to progress further towards their likely harmful objectives.

Credit to Sam Lister, Senior Cyber Analyst, and Trent Kessler, SOC Analyst  

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

  • Exploit Public-Facing Application (T1190)

Credential Access techniques:

  • Unsecured Credentials: Credentials In Files (T1552.001)
  • Adversary-in-the-Middle: LLMNR/NBT-NS Poisoning and SMB Relay (T1557.001)

Discovery

  • Network Service Discovery (T1046)
  • Remote System Discovery (T1018)
  • Account Discovery: Domain Account (T1087.002)

Command and Control techniques:

  • Application Layer Protocol: Web Protocols (T1071.001)
  • Ingress Tool Transfer (T1105)
  • Non-Standard Port (T1571)
  • Encrypted Channel: Asymmetric Cryptography (T1573.002)

Impact techniques

  • Resource Hijacking (T1496)
List of IoCs

Exploit testing IoCs:

·      34.77.65[.]112

·      Wget/1.14 (linux-gnu)

·      cjjovo7mhpt7geo8aqlgxp7ypod6dqaiz.oast[.]site • 178.128.16[.]97

·      curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.27.1 zlib/1.2.3 libidn/1.18 libssh2/1.4.2

·      cjk45q1chpqflh938kughtrfzgwiofns3.oast[.]site • 178.128.16[.]97

·      curl/7.29.0

Kinsing-related IoCs:

·      185.122.204[.]197

·      /unk.sh

·      /se.sh

·      185.221.154[.]208

·      185.221.154[.]208

·      45.15.158[.]124

·      Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36

·      /mg

·      /ki

·      /get

·      /h2

·      /ms

·      /mu

·      vocaltube[.]ru • 185.154.53[.]140

·      92.255.110[.]4

·      194.87.254[.]160

Responder-related IoCs:

·      78.128.113[.]130

·      78.128.113[.]34

·      /awp.tar.gz

·      /ivanty

·      /resp.tar.gz

Crypto-miner related IoCs:

·      140.228.24[.]160

·      aelix[.]xyz • 104.21.60[.]147 / 172.67.197[.]200

·      c8446f59cca2149cb5f56ced4b448c8d (JA3 client fingerprint)

·      b5eefe582e146aed29a21747a572e11c (JA3 client fingerprint)

·      pool.supportxmr[.]com

·      xmr.2miners[.]com

·      xmr.2miners[.]com

·      monerooceans[.]stream

·      xmr-eu2.nanopool[.]org

Port scanner-related IoCs:

·      122.161.66[.]161

·      192.241.235[.]32

·      45.86.162[.]147

·      /ncat

·      Wget/1.14 (linux-gnu)

·      45.159.248[.]179

·      142.93.115[.]146

·      23.92.29[.]148

·      /TxPortMap

·      195.123.240.183

·      6935a8d379e086ea1aed159b8abcb0bc8acf220bd1cbc0a84fd806f14014bca7 (SHA256 hash of downloaded file)

Darktrace DETECT Model Breaches

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Device / New User Agent

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Device / New User Agent and New IP

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / Callback on Web Facing Device

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Large Number of Suspicious Failed Connections

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Beacon for 4 Days

·      Compromise / Agent Beacon (Short Period)

·      Device / Large Number of Model Breaches

·      Anomalous Server Activity / Rare External from Server

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Monero Mining

·      Compromise / High Priority Crypto Currency Mining

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Device / Internet Facing Device with High Priority Alert

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Unusual LDAP Bind and Search Activity

·      Compliance / Vulnerable Name Resolution

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / New User Agent To Internal Server

·      Anomalous Connection / Suspicious HTTP Activity

·      Anomalous Connection / Unusual Internal Connections

·      Anomalous Connection / Suspicious HTTP Activity

·      Device / RDP Scan

·      Device / Large Number of Model Breaches

·      Compromise / Beaconing Activity To External Rare

·      Compromise / Beacon to Young Endpoint

·      Anomalous Connection / Suspicious HTTP Activity

·      Compromise / Suspicious Internal Use Of Web Protocol

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Internet Facing System File Download

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Initial Breach Chain Compromise

References

[1] https://www.mnemonic.io/resources/blog/ivanti-endpoint-manager-mobile-epmm-authentication-bypass-vulnerability/
[2] https://www.mnemonic.io/resources/blog/threat-advisory-remote-file-write-vulnerability-in-ivanti-epmm/
[3] https://www.mnemonic.io/resources/blog/threat-advisory-remote-code-execution-vulnerability-in-ivanti-sentry/
[4] https://www.ivanti.com/blog/cve-2023-35078-new-ivanti-epmm-vulnerability
[5] https://forums.ivanti.com/s/article/CVE-2023-35078-Remote-unauthenticated-API-access-vulnerability?language=en_US
[6] https://forums.ivanti.com/s/article/KB-Remote-unauthenticated-API-access-vulnerability-CVE-2023-35078?language=en_US
[7] https://www.ivanti.com/blog/cve-2023-35081-new-ivanti-epmm-vulnerability
[8] https://forums.ivanti.com/s/article/CVE-2023-35081-Arbitrary-File-Write?language=en_US
[9] https://forums.ivanti.com/s/article/KB-Arbitrary-File-Write-CVE-2023-35081?language=en_US
[10] https://www.ivanti.com/blog/cve-2023-38035-vulnerability-affecting-ivanti-sentry
[11] https://forums.ivanti.com/s/article/CVE-2023-38035-API-Authentication-Bypass-on-Sentry-Administrator-Interface?language=en_US
[12] https://forums.ivanti.com/s/article/KB-API-Authentication-Bypass-on-Sentry-Administrator-Interface-CVE-2023-38035?language=en_US
[13] https://isc.sans.edu/diary/Your+Business+Data+and+Machine+Learning+at+Risk+Attacks+Against+Apache+NiFi/29900

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Cloud

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI