Blog
/
/
August 25, 2020

Emotet Resurgence: Email & Network Defense Insights

Explore how Darktrace's defense in depth strategy combats Emotet's resurgence in email and network layers, ensuring robust cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Aug 2020

The Emotet banking malware first emerged in 2014, and has since undergone multiple iterations. Emotet seeks to financially profit from a range of organizations by spreading rapidly from device to device and stealing sensitive financial information.

Darktrace’s AI has detected the return of this botnet after a five month absence. The new Spamware campaign has hit multiple industries through highly sophisticated phishing emails, containing either URLs linking to the download of a macro-containing Microsoft Word document or an attachment of the document itself. This iteration uses new variants of infrastructure and malware that were unknown to threat intelligence lists – thus easily bypassing static, rule-based defenses.

In this blog post, we investigate the attack from two angles. The first documents a case where Emotet successfully infiltrated a company’s network, where it was promptly detected and alerted on by the Enterprise Immune System. We then explore two customers who had extended Darktrace’s Cyber AI coverage to the inbox. While these organizations were also targeted by this latest Emotet campaign, the malicious email containing the Emotet payload was identified and blocked by Antigena Email.

Case study one: Detecting Emotet in the network

Figure 1: A timeline of the attack

This first case study looks at a large European organization spanning multiple industries, including healthcare, pharmaceuticals, and manufacturing. Darktrace’s AI was monitoring over 2500 devices when the organization became a victim of this new wave of Emotet.

The attack entered the business via a phishing email that fell outside of Darktrace’s scope in this particular deployment, as the customer had not yet activated Antigena Email. Either a malicious link or a macro-embedded Word document in the email directed a device to the malicious payload.

Darktrace’s Enterprise Immune System witnessed SSL connections to a 100% rare external IP address, and detected a Kernel crash on the device shortly afterwards, indicating potential exploitation.

Following these actions, the desktop began to beacon to multiple external endpoints using self-signed or invalid SSL certificates. The observed endpoints had previously been associated with Trickbot C2 servers and the Emotet malware. The likely overall dwell time – that is the length of time an attacker has free reign in an environment before they are eradicated – was in this instance around 24 hours, with most of the activity taking place on July 23.

The device then made a large number of new and unusual internal connection attempts over SMB (port 445) to 97 internal devices during a one-hour period. The goal was likely lateral movement, possibly with the intention to infect other devices, download additional malware, and send out more spam emails.

Darktrace’s AI had promptly alerted the security team to the initial rare connections, but when the device attempted lateral movement it escalated the severity of the alert. The security team was able to remediate the situation before further damage was done, taking the desktop offline.

This overview of the infected device shows the extent of the anomalous behavior, with over a dozen Darktrace detections firing in quick succession.

Figure 2: A graph showing unusual activity in combination with the large number of model breaches on July 23

Figure 3: A list of all model breaches occurring over a small time on the compromised device

Case study two: Catching Emotet in the email environment

While Darktrace’s Enterprise Immune System allows us to visualize the attack within the network, Antigena Email has also identified the Emotet phishing campaign in many other customer environments and stopped the attack before the payload could be downloaded.

One European organization was hit by multiple phishing emails associated with Emotet. These emails use a number of tactics, including personalized subject lines, malicious attachments, and hidden malicious URLs. However, Darktrace’s AI recognized the emails as highly anomalous for the organization and prevented them from reaching employees’ inboxes.

Figure 4: A snapshot of Antigena Email’s user interface. The subject line reads ‘Notice of transfer.’

Despite claiming to be from CaixaBank, a Spanish financial services company, Antigena Email revealed that the email was actually sent from a Brazilian domain. The email also contained a link that was hidden behind text suggesting it would lead to a CaixaBank domain, but Darktrace recognized this as a deliberate attempt to mislead the recipient. Antigena Email is unique in its ability to gather insights from across the broader business, and it leveraged this ability to reveal that the link in fact led to a WordPress domain that Darktrace’s AI identified as 100% rare for the business. This would not have been possible without a unified security platform analyzing and comparing data across different parts of the organization.

Figure 5: The malicious links contained in the email

The three above links surfaced by Darktrace are all associated with the Emotet malware, and prompt the user to download a Word file. This document contains a macro with instructions for downloading the actual virus payload.

Another email targeting the same organization contained a header suggesting it was from Vietnam. The sender had never been in any previous correspondence across the business, and the single, isolated link within the email was also revealed to be a 100% rare domain. The website displayed when visiting the domain imitates a legitimate printing business, but appears hastily made and contained a similar malicious payload.

In both cases, Darktrace’s AI recognized these as phishing attempts due to its understanding of normal communication patterns and behavior for the business and held the emails back from the inbox, preventing Emotet from entering the next phase of the attack life cycle.

Case study three: A truly global campaign

Darktrace has seen Emotet in attacks targeting customers around the world, with one of the most recent campaigns aimed at a food production and distribution company in Japan. This customer received six Emotet emails across July 29 and July 30. The senders spoofed Japanese names and some existing Japanese companies, including Mitsubishi. Antigena Email successfully detected and actioned these emails, recognizing the spoofing indicators, ‘unspoofing’ the emails, and converting the attachments.

Figure 6: A second Emotet email targeting an organization in Japan

Revealing a phish

Both the subject line and the filename translate to “Regarding the invoice,” followed by a number and the date. The email imitated a well-known Japanese company (三菱食品(株)), with ‘藤沢 昭彦’ as a common Japanese name and the appended ‘様’ serving a similar function to ‘Sir’ or ‘Dr,’ in a clear attempt to mimic a legitimate business email.

A subsequent investigation revealed that the sender’s location was actually Portugal, and the hash values of Microsoft Word attachments were consistent with Emotet. Crucially, at the time of the attack, these file hashes were not publicly associated with any malicious behavior and so could not have been used for initial detection.

Figure 7: Antigena Email shows critical metrics revealing the true source of the email

Surfacing further key metrics behind the email, Antigena Email revealed that the true sender was using a GMO domain name. GMO is a Japanese cloud-hosting company that offers cheap web email services.

Figure 8: Antigena Email reveals the anomalous extensions and mimes

The details of the attachment show that both the extension and mime type is anomalous in comparison to documents this customer commonly exchanges by email.

Figure 9: Antigena Email detects the attempt at inducement

Antigena Email’s models are able to recognize topic anomalies and inducement attempts in emails, regardless of the language they are written in. Despite this email being written in Japanese, Darktrace’s AI was still able to reveal the attempt at inducement, giving the email a high score of 85.

Figure 10: The six successive Emotet emails

The close proximity in which these emails were sent and the fact they all contained URLs consistent with Emotet suggests that they are likely part of the same campaign. Different recipients received the emails from different senders in an attempt to bypass traditional security tools, which are trained to deny-list an individual sender once it is recognized as bad.

A defense in depth

This new campaign and the comeback of the Emotet malware has shown the need for defense in depth – or having multiple layers of security across the different areas of a business, including email, network, cloud and SaaS, and beyond.

Historically, defense in depth has led companies to adopt myriad point solutions, which can be both expensive and challenging to manage. Security leaders are increasingly abandoning point solutions in favor of a single security platform, which not only makes handling the security stack easier and more efficient, but creates synergies between different parts of the platform. Data can be analyzed across different sources and insights drawn from different areas of the organization, helping detect sophisticated attacks that might attempt to exploit a business’ siloed approach to security.

A single platform ultimately reduces the friction for security teams while allowing for effective, company-wide incident investigation. And when a platform approach leverages AI to understand normal behavior rather than looking for ‘known bad’, it can detect unknown and emerging threats – and help prevent damage from being done.

Thanks to Darktrace analyst Beverly McCann for her insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI