Blog
/
AI
/
November 3, 2024

AI and Cybersecurity: Predictions for 2025

Discover the role of AI in shaping cybersecurity predictions for 2025 and how organizations can prepare for emerging threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Nov 2024

Introduction: AI cybersecurity predictions for 2025

Each year, Darktrace's AI and cybersecurity experts reflect on the events of the past 12 months and predict the trends we expect to shape the cybersecurity landscape in the year ahead. In 2024, we predicted that the global elections, fast-moving AI innovations, and increasingly cloud-based IT environments would be key factors shaping the cyber threat landscape.

Looking ahead to 2025, we expect the total addressable market of cybercrime to expand as attackers add more tactics to their toolkits. Threat actors will continue to take advantage of the volatile geopolitical environment and cybersecurity challenges will increasingly move to new frontiers like space. When it comes to AI, we anticipate the innovation in AI agents in 2024 to pave the way for the rise of multi-agent systems in 2025, creating new challenges and opportunities for cybersecurity professionals and attackers alike.

Here are ten trends to watch for in 2025:

1. The overall Total Addressable Market (TAM) of cybercrime gets bigger

Cybercrime is a global business, and an increasingly lucrative one, scaling through the adoption of AI and cybercrime-as-a-service. Annual revenue from cybercrime is already estimated to be over $8 trillion, which we’ve found is almost 5x greater than the revenue of the Magnificent Seven stocks. There are a few key factors driving this growth.

The ongoing growth of devices and systems means that existing malware families will continue to be successful. As of October 2024, it’s estimated that more than 5.52 billion people (~67%) have access to the internet and sources estimate 18.8 billion connected devices will be online by the end of 2024. The increasing adoption of AI is poised to drive even more interconnected systems as well as new data centers and infrastructure globally.

At the same time, more sophisticated capabilities are available for low-level attackers – we’ve already seen the trickle-down economic benefits of living off the land, edge infrastructure exploitation, and identity-focused exploitation. The availability of Ransomware-as-a-Service (RaaS) and Malware-as-a-Service (MaaS) make more advanced tactics the norm. The subscription income that these groups can generate enables more adversarial innovation, so attacks are getting faster and more effective with even bigger financial ramifications.

While there has also been an increasing trend in the last year of improved cross-border law enforcement, the efficacy of these efforts remains to be seen as cybercriminal gangs are also getting more resilient and professionalized. They are building better back-up systems and infrastructure as well as more multi-national networks and supply chains.

2. Security teams need to prepare for the rise of AI agents and multi-agent systems

Throughout 2024, we’ve seen major announcements about advancements in AI agents from the likes of OpenAI, Microsoft, Salesforce, and more. In 2025, we’ll see increasing innovation in and adoption of AI agents as well as the emergence of multi-agent systems (or “agent swarms”), where groups of autonomous agents work together to tackle complex tasks.

The rise of AI agents and multi-agent systems will introduce new challenges in cybersecurity, including new attack vectors and vulnerabilities. Security teams need to think about how to protect these systems to prevent data poisoning, prompt injection, or social engineering attacks.

One benefit of multi-agent systems is that agents can autonomously communicate, collaborate, and interact. However without clear and distinct boundaries and explicit permissions, this can also pose a major data privacy risk and avenue for manipulation. These issues cannot be addressed by traditional application testing alone. We must ensure these systems are secure by design, where robust protective mechanisms and data guardrails are built into the foundations.

3. Threat actors will be the earliest adopters of AI agents and multi-agent systems

We’ve already seen how quickly threat actors have been able to adopt generative AI for tasks like email phishing and reconnaissance. The next frontier for threat actors will be AI agents and multi-agent systems that are specialized in autonomous tasks like surveillance, initial access brokering, privilege escalation, vulnerability exploitation, data summarization for smart exfiltration, and more. Because they have no concern for safe, secure, accurate, and responsible use, adversaries will adopt these systems faster than cyber defenders.

We could also start to see use cases emerge for multi-agent systems in cyber defense – with potential for early use cases in incident response, application testing, and vulnerability discovery. On the whole, security teams will be slower to adopt these systems than adversaries because of the need to put in place proper security guardrails and build trust over time.

4. There is heightened supply chain risk for Large Language Models (LLMs)

Training LLMs requires a lot of data, and many experts have warned that world is running out of quality data for that training. As a result, there will be an increasing reliance on synthetic data, which can introduce new issues of accuracy and efficacy. Moreover, data supply chain risks will be an Achilles heel for organizations, with the potential interjection of vulnerabilities through the data and machine learning providers that they rely on. Poisoning one data set could have huge trickle-down impacts across many different systems. Data security will be paramount in 2025.

5. The race to identify software vulnerabilities intensifies

The time it takes for threat actors to exploit newly published CVEs is getting shorter, giving defenders an even smaller window to apply patches and remediations. A 2024 report from Cloudflare found that threat actors quickly weaponized proof of concept exploits in attacks as quickly as 22 minutes after the exploits were made public.

At the same time, 2024 also saw the first reports from researchers across academia and the tech industry using AI for vulnerability discovery in real-world code. With threat actors getting faster at exploiting vulnerabilities, defenders will need to use AI to identify vulnerabilities in their software stack and to help identify and prioritize remediations and patches.

6. Insider threat risks will force organizations to evolve zero trust strategies

In 2025, an increasingly volatile geopolitical situation and the intensity of the AI race will make insider threats an even bigger risk for businesses, forcing organizations to expand zero-trust strategies. The traditional zero-trust model provides protection from external threats to an organization’s network by requiring continuous verification of the devices and users attempting to access critical business systems, services, and information from multiple sources. However, as we have seen in the more recent Jack Teixeira case, malicious insiders can still do significant damage to an organization within their approved and authenticated boundary.

To circumvent the remaining security gaps in a zero-trust architecture and mitigate increasing risk of insider threats, organizations will need to integrate a behavioral understanding dimension to their zero-trust approaches. The zero-trust best practice of “never trust, always verify” needs to evolve to become “never trust, always verify, and continuously monitor.”

7. Identity remains an expensive problem for businesses

2024 saw some of the biggest and costliest attacks – all because the attacker had access to compromised credentials. Essentially, they had the key to the front door. Businesses still struggle with identity and access management (IAM), and it’s getting more complex now that we’re in the middle of a massive Software-as-a-Service (SaaS) migration driven by increasing rates of AI and cloud use across businesses.

This challenge is going to be exacerbated in 2025 by a few global and business factors. First, there is an increasing push for digital identities, such as the rollout of the EU Digital Identity Framework that is underway, which could introduce additional attack vectors. As they scale, businesses are turning more and more to centralized identity and access solutions with decentralized infrastructure and relying on SaaS and application-native security.

8. Increasing vulnerabilities at the edge

During the COVID-19 pandemic, many organizations had to stand-up remote access solutions quickly – in a matter of days or weeks – without the high level of due diligence that they require to be fully secured. In 2025, we expect to see continued fall-out as these quickly spun-up solutions start to present genuine vulnerability to businesses. We’ve already seen this start to play out in 2024 with the mass-exploitation of internet-edge devices like firewalls and VPN gateway products.

By July 2024, Darktrace’s threat research team observed that the most widely exploited edge infrastructure devices were those related to Ivanti Connect Secure, JetBrains TeamCity, FortiClient Enterprise Management Server, and Palo Alto Networks PAN-OS. Across the industry, we’ve already seen many zero days and vulnerabilities exploiting these internet-connected devices, which provide inroads into the network and store/cache credentials and passwords of other users that are highly valuable for threat actors.

9. Hacking Operational Technology (OT) gets easier

Hacking OT is notoriously complex – causing damage requires an intimate knowledge of the specific systems being targeted and historically was the reserve of nation states. But as OT has become more reliant and integrated with IT systems, attackers have stumbled on ways to cause disruption without having to rely on the sophisticated attack-craft normally associated with nation-state groups. That’s why some of the most disruptive attacks of the last year have come from hacktivist and financially-motivated criminal gangs – such as the hijacking of internet-exposed Programmable Logic Controllers (PLCs) by anti-Israel hacking groups and ransomware attacks resulting in the cancellation of hospital operations.  

In 2025, we expect to see an increase in cyber-physical disruption caused by threat groups motivated by political ideology or financial gain, bringing the OT threat landscape closer in complexity and scale to that of the IT landscape. The sectors most at risk are those with a strong reliance on IoT sensors, including healthcare, transportation, and manufacturing sectors.

10. Securing space infrastructure and systems becomes a critical imperative

The global space industry is growing at an incredibly fast pace, and 2025 is on track to be another record-breaking year for spaceflight with major missions and test flights planned by NASA, ESA, CNSA as well as the expected launch of the first commercial space station from Vast and programs from Blue Origin, Amazon and more. Research from Analysis Mason suggests that 38,000 additional satellites will be built and launched by 2033 and the global space industry revenue will reach $1.7 trillion by 2032. Space has also been identified as a focus area for the incoming US administration.

In 2025, we expect to see new levels of tension emerge as private and public infrastructure increasingly intersect in space, shining a light on the lack of agreed upon cyber norms and the increasing challenge of protecting complex and remote space systems against modern cyber threats.  Historically focused on securing earth-bound networks and environments, the space industry will face challenges as post-orbit threats rise, with satellites moving up the target list.

The EU’s NIS2 Directive now recognizes the space sector as an essential entity that is subject to its most strict cybersecurity requirements. Will other jurisdictions follow suit? We expect global debates about cyber vulnerabilities in space to come to the forefront as we become more reliant on space-based technology.

Conclusion: Preparing for the future

Whatever 2025 brings, Darktrace is committed to providing robust cybersecurity leadership and solutions to enterprises around the world. Our team of subject matter experts will continue to monitor emerging threat trends, advising both our customers and our product development teams.

And for day-to-day security, our multi-layered AI cybersecurity platform can protect against all types of threats, whether they are known, unknown, entirely novel, or powered by AI. It accomplishes this by learning what is normal for your unique organization, therefore identifying unusual and suspicious behavior at machine speed, regardless of existing rules and signatures. In this way, organizations with Darktrace can be ready for any developments in the cybersecurity threat landscape that the new year may bring.

Discover more about Darktrace's predictions on the AI and cybersecurity landscape for 2025 by watching the full recorded webinar here.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Network

/

August 8, 2025

Ivanti Under Siege: Investigating the Ivanti Endpoint Manager Mobile Vulnerabilities (CVE-2025-4427 & CVE-2025-4428)

ivanti cve exploitation edge infrastructure Default blog imageDefault blog image

Ivanti & Edge infrastructure exploitation

Edge infrastructure exploitations continue to prevail in today’s cyber threat landscape; therefore, it was no surprise that recent Ivanti Endpoint Manager Mobile (EPMM) vulnerabilities CVE-2025-4427 and CVE-2025-4428 were exploited targeting organizations in critical sectors such as healthcare, telecommunications, and finance across the globe, including across the Darktrace customer base in May 2025.

Exploiting these types of vulnerabilities remains a popular choice for threat actors seeking to enter an organization’s network to perform malicious activity such as cyber espionage, data exfiltration and ransomware detonation.

Vulnerabilities in Ivanti EPMM

Ivanti EPMM allows organizations to manage and configure enterprise mobile devices. On May 13, 2025, Ivanti published a security advisory [1] for their Ivanti Endpoint Manager Mobile (EPMM) devices addressing a medium and high severity vulnerability:

  • CVE-2025-4427, CVSS: 5.6: An authentication bypass vulnerability
  • CVE-2025-4428, CVSS: 7.2: Remote code execution vulnerability

Successfully exploiting both vulnerabilities at the same time could lead to unauthenticated remote code execution from an unauthenticated threat actor, which could allow them to control, manipulate, and compromise managed devices on a network [2].

Shortly after the disclosure of these vulnerabilities, external researchers uncovered evidence that they were being actively exploited in the wild and identified multiple indicators of compromise (IoCs) related to post-exploitation activities for these vulnerabilities [2] [3]. Research drew particular attention to the infrastructure utilized in ongoing exploitation activity, such as leveraging the two vulnerabilities to eventually deliver malware contained within ELF files from Amazon Web Services (AWS) S3 bucket endpoints and to deliver KrustyLoader malware for persistence. KrustyLoader is a Rust based malware that was discovered being downloaded in compromised Ivanti Connect Secure systems back in January 2024 when the zero-day critical vulnerabilities; CVE-2024-21887 and CVE-2023-46805 [10].

This suggests the involvement of the threat actor UNC5221, a suspected China-nexus espionage actor [3].

In addition to exploring the post-exploit tactics, techniques, and procedures (TTPs) observed for these vulnerabilities across Darktrace’s customer base, this blog will also examine the subtle changes and similarities in the exploitation of earlier Ivanti vulnerabilities—specifically Ivanti Connect Secure (CS) and Policy Secure (PS) vulnerabilities CVE-2023-46805 and CVE-2024-21887 in early 2024, as well as CVE-2025-0282 and CVE-2025-0283, which affected CS, PS, and Zero Trust Access (ZTA) in January 2025.

Darktrace Coverage

In May 2025, shortly after Ivanti disclosed vulnerabilities in their EPMM product, Darktrace’s Threat Research team identified attack patterns potentially linked to the exploitation of these vulnerabilities across multiple customer environments. The most noteworthy attack chain activity observed included exploit validation, payload delivery via AWS S3 bucket endpoints, subsequent delivery of script-based payloads, and connections to dpaste[.]com, possibly for dynamic payload retrieval. In a limited number of cases, connections were also made to an IP address associated with infrastructure linked to SAP NetWeaver vulnerability CVE-2025-31324, which has been investigated by Darktrace in an earlier case.

Exploit Validation

Darktrace observed devices within multiple customer environments making connections related to Out-of-Band Application Security Testing (OAST). These included a range of DNS requests and connections, most of which featured a user agent associated with the command-line tool cURL, directed toward associated endpoints. The hostnames of these endpoints consisted of a string of randomly generated characters followed by an OAST domain, such as 'oast[.]live', 'oast[.]pro', 'oast[.]fun', 'oast[.]site', 'oast[.]online', or 'oast[.]me'. OAST endpoints can be leveraged by malicious actors to trigger callbacks from targeted systems, such as for exploit validation. This activity, likely representing the initial phase of the attack chain observed across multiple environments, was also seen in the early stages of previous investigations into the exploitation of Ivanti vulnerabilities [4]. Darktrace also observed similar exploit validation activity during investigations conducted in January 2024 into the Ivanti CS vulnerabilities CVE-2023-46805 and CVE-2024-21887.

Payload Delivery via AWS

Devices across multiple customer environments were subsequently observed downloading malicious ELF files—often with randomly generated filenames such as 'NVGAoZDmEe'—from AWS S3 bucket endpoints like 's3[.]amazonaws[.]com'. These downloads occurred over HTTP connections, typically using wget or cURL user agents. Some of the ELF files were later identified to be KrustyLoader payloads using open-source intelligence (OSINT). External researchers have reported that the KrustyLoader malware is executed in cases of Ivanti EPMM exploitation to gain and maintain a foothold in target networks [2].

In one customer environment, after connections were made to the endpoint fconnect[.]s3[.]amazonaws[.]com, Darktrace observed the target system downloading the ELF file mnQDqysNrlg via the user agent Wget/1.14 (linux-gnu). Further investigation of the file’s SHA1 hash (1dec9191606f8fc86e4ae4fdf07f09822f8a94f2) linked it to the KrustyLoader malware [5]. In another customer environment, connections were instead made to tnegadge[.]s3[.]amazonaws[.]com using the same user agent, from which the ELF file “/dfuJ8t1uhG” was downloaded. This file was also linked to KrustyLoader through its SHA1 hash (c47abdb1651f9f6d96d34313872e68fb132f39f5) [6].

The pattern of activity observed so far closely mirrors previous exploits associated with the Ivanti vulnerabilities CVE-2023-46805 and CVE-2024-21887 [4]. As in those cases, Darktrace observed exploit validation using OAST domains and services, along with the use of AWS endpoints to deliver ELF file payloads. However, in this instance, the delivered payload was identified as KrustyLoader malware.

Later-stage script file payload delivery

In addition to the ELF file downloads, Darktrace also detected other file downloads across several customer environments, potentially representing the delivery of later-stage payloads.

The downloaded files included script files with the .sh extension, featuring randomly generated alphanumeric filenames. One such example is “4l4md4r.sh”, which was retrieved during a connection to the IP address 15.188.246[.]198 using a cURL-associated user agent. This IP address was also linked to infrastructure associated with the SAP NetWeaver remote code execution vulnerability CVE-2025-31324, which enables remote code execution on NetWeaver Visual Composer. External reporting has attributed this infrastructure to a China-nexus state actor [7][8][9].

In addition to the script file downloads, devices on some customer networks were also observed making connections to pastebin[.]com and dpaste[.]com, two sites commonly used to host or share malicious payloads or exploitation instructions [2]. Exploits, including those targeting Ivanti EPMM vulnerabilities, can dynamically fetch malicious commands from sites like dpaste[.]com, enabling threat actors to update payloads. Unlike the previously detailed activity, this behavior was not identified in any prior Darktrace investigations into Ivanti-related vulnerabilities, suggesting a potential shift in the tactics used in post-exploitation stages of Ivanti attacks.

Conclusion

Edge infrastructure vulnerabilities, such as those found in Ivanti EPMM and investigated across customer environments with Darktrace / NETWORK, have become a key tool in the arsenal of attackers in today’s threat landscape. As highlighted in this investigation, while many of the tactics employed by threat actors following successful exploitation of vulnerabilities remain the same, subtle shifts in their methods can also be seen.

These subtle and often overlooked changes enable threat actors to remain undetected within networks, highlighting the critical need for organizations to maintain continuous extended visibility, leverage anomaly based behavioral analysis, and deploy machine speed intervention across their environments.

Credit to Nahisha Nobregas (Senior Cyber Analyst) and Anna Gilbertson (Senior Cyber Analyst)

Appendices

Mid-High Confidence IoCs

(IoC – Type - Description)

-       trkbucket.s3.amazonaws[.]com – Hostname – C2 endpoint

-       trkbucket.s3.amazonaws[.]com/NVGAoZDmEe – URL – Payload

-       tnegadge.s3.amazonaws[.]com – Hostname – C2 endpoint

-       tnegadge.s3.amazonaws[.]com/dfuJ8t1uhG – URL – Payload

-       c47abdb1651f9f6d96d34313872e68fb132f39f5 - SHA1 File Hash – Payload

-       4abfaeadcd5ab5f2c3acfac6454d1176 - MD5 File Hash - Payload

-       fconnect.s3.amazonaws[.]com – Hostname – C2 endpoint

-       fconnect.s3.amazonaws[.]com/mnQDqysNrlg – URL - Payload

-       15.188.246[.]198 – IP address – C2 endpoint

-       15.188.246[.]198/4l4md4r.sh?grep – URL – Payload

-       185.193.125[.]65 – IP address – C2 endpoint

-       185.193.125[.]65/c4qDsztEW6/TIGHT_UNIVERSITY – URL – C2 endpoint

-       d8d6fe1a268374088fb6a5dc7e5cbb54 – MD5 File Hash – Payload

-       64.52.80[.]21 – IP address – C2 endpoint

-       0d8da2d1.digimg[.]store – Hostname – C2 endpoint

-       134.209.107[.]209 – IP address – C2 endpoint

Darktrace Model Detections

-       Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring Model)

-       Compromise / Possible Tunnelling to Bin Services

-       Anomalous Server Activity / New User Agent from Internet Facing System

-       Compliance / Pastebin

-       Device / Internet Facing Device with High Priority Alert

-       Anomalous Connection / Callback on Web Facing Device

-       Anomalous File / Script from Rare External Location

-       Anomalous File / Incoming ELF File

-       Device / Suspicious Domain

-       Device / New User Agent

-       Anomalous Connection / Multiple Connections to New External TCP Port

-       Anomalous Connection / New User Agent to IP Without Hostname

-       Anomalous File / EXE from Rare External Location

-       Anomalous File / Internet Facing System File Download

-       Anomalous File / Multiple EXE from Rare External Locations

-       Compromise / Suspicious HTTP and Anomalous Activity

-       Device / Attack and Recon Tools

-       Device / Initial Attack Chain Activity

-       Device / Large Number of Model Alerts

-       Device / Large Number of Model Alerts from Critical Network Device

References

1.     https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Endpoint-Manager-Mobile-EPMM?language=en_US

2.     https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

3.     https://www.wiz.io/blog/ivanti-epmm-rce-vulnerability-chain-cve-2025-4427-cve-2025-4428

4.     https://www.darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

5.     https://www.virustotal.com/gui/file/ac91c2c777c9e8638ec1628a199e396907fbb7dcf9c430ca712ec64a6f1fcbc9/community

6.     https://www.virustotal.com/gui/file/f3e0147d359f217e2aa0a3060d166f12e68314da84a4ecb5cb205bd711c71998/community

7.     https://www.virustotal.com/gui/ip-address/15.188.246.198

8.     https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9.     https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure

10.  https://www.synacktiv.com/en/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein.

Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nahisha Nobregas
SOC Analyst

Blog

/

Cloud

/

August 7, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

cloud security investigation guy on computer doing workDefault blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI