Blog
/

Thought Leadership

/
November 3, 2024

Preparing for 2025: Darktrace's Top 10 AI and Cybersecurity Predictions

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Nov 2024
This blog outlines ten trends we expect to see in AI cybersecurity in 2025, from a rise in multi-agent systems to heightened supply chain risk from LLMs.

Introduction: AI cybersecurity predictions for 2025

Each year, Darktrace's AI and cybersecurity experts reflect on the events of the past 12 months and predict the trends we expect to shape the cybersecurity landscape in the year ahead. In 2024, we predicted that the global elections, fast-moving AI innovations, and increasingly cloud-based IT environments would be key factors shaping the cyber threat landscape.

Looking ahead to 2025, we expect the total addressable market of cybercrime to expand as attackers add more tactics to their toolkits. Threat actors will continue to take advantage of the volatile geopolitical environment and cybersecurity challenges will increasingly move to new frontiers like space. When it comes to AI, we anticipate the innovation in AI agents in 2024 to pave the way for the rise of multi-agent systems in 2025, creating new challenges and opportunities for cybersecurity professionals and attackers alike.

Here are ten trends to watch for in 2025:

1. The overall Total Addressable Market (TAM) of cybercrime gets bigger

Cybercrime is a global business, and an increasingly lucrative one, scaling through the adoption of AI and cybercrime-as-a-service. Annual revenue from cybercrime is already estimated to be over $8 trillion, which we’ve found is almost 5x greater than the revenue of the Magnificent Seven stocks. There are a few key factors driving this growth.

The ongoing growth of devices and systems means that existing malware families will continue to be successful. As of October 2024, it’s estimated that more than 5.52 billion people (~67%) have access to the internet and sources estimate 18.8 billion connected devices will be online by the end of 2024. The increasing adoption of AI is poised to drive even more interconnected systems as well as new data centers and infrastructure globally.

At the same time, more sophisticated capabilities are available for low-level attackers – we’ve already seen the trickle-down economic benefits of living off the land, edge infrastructure exploitation, and identity-focused exploitation. The availability of Ransomware-as-a-Service (RaaS) and Malware-as-a-Service (MaaS) make more advanced tactics the norm. The subscription income that these groups can generate enables more adversarial innovation, so attacks are getting faster and more effective with even bigger financial ramifications.

While there has also been an increasing trend in the last year of improved cross-border law enforcement, the efficacy of these efforts remains to be seen as cybercriminal gangs are also getting more resilient and professionalized. They are building better back-up systems and infrastructure as well as more multi-national networks and supply chains.

2. Security teams need to prepare for the rise of AI agents and multi-agent systems

Throughout 2024, we’ve seen major announcements about advancements in AI agents from the likes of OpenAI, Microsoft, Salesforce, and more. In 2025, we’ll see increasing innovation in and adoption of AI agents as well as the emergence of multi-agent systems (or “agent swarms”), where groups of autonomous agents work together to tackle complex tasks.

The rise of AI agents and multi-agent systems will introduce new challenges in cybersecurity, including new attack vectors and vulnerabilities. Security teams need to think about how to protect these systems to prevent data poisoning, prompt injection, or social engineering attacks.

One benefit of multi-agent systems is that agents can autonomously communicate, collaborate, and interact. However without clear and distinct boundaries and explicit permissions, this can also pose a major data privacy risk and avenue for manipulation. These issues cannot be addressed by traditional application testing alone. We must ensure these systems are secure by design, where robust protective mechanisms and data guardrails are built into the foundations.

3. Threat actors will be the earliest adopters of AI agents and multi-agent systems

We’ve already seen how quickly threat actors have been able to adopt generative AI for tasks like email phishing and reconnaissance. The next frontier for threat actors will be AI agents and multi-agent systems that are specialized in autonomous tasks like surveillance, initial access brokering, privilege escalation, vulnerability exploitation, data summarization for smart exfiltration, and more. Because they have no concern for safe, secure, accurate, and responsible use, adversaries will adopt these systems faster than cyber defenders.

We could also start to see use cases emerge for multi-agent systems in cyber defense – with potential for early use cases in incident response, application testing, and vulnerability discovery. On the whole, security teams will be slower to adopt these systems than adversaries because of the need to put in place proper security guardrails and build trust over time.

4. There is heightened supply chain risk for Large Language Models (LLMs)

Training LLMs requires a lot of data, and many experts have warned that world is running out of quality data for that training. As a result, there will be an increasing reliance on synthetic data, which can introduce new issues of accuracy and efficacy. Moreover, data supply chain risks will be an Achilles heel for organizations, with the potential interjection of vulnerabilities through the data and machine learning providers that they rely on. Poisoning one data set could have huge trickle-down impacts across many different systems. Data security will be paramount in 2025.

5. The race to identify software vulnerabilities intensifies

The time it takes for threat actors to exploit newly published CVEs is getting shorter, giving defenders an even smaller window to apply patches and remediations. A 2024 report from Cloudflare found that threat actors quickly weaponized proof of concept exploits in attacks as quickly as 22 minutes after the exploits were made public.

At the same time, 2024 also saw the first reports from researchers across academia and the tech industry using AI for vulnerability discovery in real-world code. With threat actors getting faster at exploiting vulnerabilities, defenders will need to use AI to identify vulnerabilities in their software stack and to help identify and prioritize remediations and patches.

6. Insider threat risks will force organizations to evolve zero trust strategies

In 2025, an increasingly volatile geopolitical situation and the intensity of the AI race will make insider threats an even bigger risk for businesses, forcing organizations to expand zero-trust strategies. The traditional zero-trust model provides protection from external threats to an organization’s network by requiring continuous verification of the devices and users attempting to access critical business systems, services, and information from multiple sources. However, as we have seen in the more recent Jack Teixeira case, malicious insiders can still do significant damage to an organization within their approved and authenticated boundary.

To circumvent the remaining security gaps in a zero-trust architecture and mitigate increasing risk of insider threats, organizations will need to integrate a behavioral understanding dimension to their zero-trust approaches. The zero-trust best practice of “never trust, always verify” needs to evolve to become “never trust, always verify, and continuously monitor.”

7. Identity remains an expensive problem for businesses

2024 saw some of the biggest and costliest attacks – all because the attacker had access to compromised credentials. Essentially, they had the key to the front door. Businesses still struggle with identity and access management (IAM), and it’s getting more complex now that we’re in the middle of a massive Software-as-a-Service (SaaS) migration driven by increasing rates of AI and cloud use across businesses.

This challenge is going to be exacerbated in 2025 by a few global and business factors. First, there is an increasing push for digital identities, such as the rollout of the EU Digital Identity Framework that is underway, which could introduce additional attack vectors. As they scale, businesses are turning more and more to centralized identity and access solutions with decentralized infrastructure and relying on SaaS and application-native security.

8. Increasing vulnerabilities at the edge

During the COVID-19 pandemic, many organizations had to stand-up remote access solutions quickly – in a matter of days or weeks – without the high level of due diligence that they require to be fully secured. In 2025, we expect to see continued fall-out as these quickly spun-up solutions start to present genuine vulnerability to businesses. We’ve already seen this start to play out in 2024 with the mass-exploitation of internet-edge devices like firewalls and VPN gateway products.

By July 2024, Darktrace’s threat research team observed that the most widely exploited edge infrastructure devices were those related to Ivanti Connect Secure, JetBrains TeamCity, FortiClient Enterprise Management Server, and Palo Alto Networks PAN-OS. Across the industry, we’ve already seen many zero days and vulnerabilities exploiting these internet-connected devices, which provide inroads into the network and store/cache credentials and passwords of other users that are highly valuable for threat actors.

9. Hacking Operational Technology (OT) gets easier

Hacking OT is notoriously complex – causing damage requires an intimate knowledge of the specific systems being targeted and historically was the reserve of nation states. But as OT has become more reliant and integrated with IT systems, attackers have stumbled on ways to cause disruption without having to rely on the sophisticated attack-craft normally associated with nation-state groups. That’s why some of the most disruptive attacks of the last year have come from hacktivist and financially-motivated criminal gangs – such as the hijacking of internet-exposed Programmable Logic Controllers (PLCs) by anti-Israel hacking groups and ransomware attacks resulting in the cancellation of hospital operations.  

In 2025, we expect to see an increase in cyber-physical disruption caused by threat groups motivated by political ideology or financial gain, bringing the OT threat landscape closer in complexity and scale to that of the IT landscape. The sectors most at risk are those with a strong reliance on IoT sensors, including healthcare, transportation, and manufacturing sectors.

10. Securing space infrastructure and systems becomes a critical imperative

The global space industry is growing at an incredibly fast pace, and 2025 is on track to be another record-breaking year for spaceflight with major missions and test flights planned by NASA, ESA, CNSA as well as the expected launch of the first commercial space station from Vast and programs from Blue Origin, Amazon and more. Research from Analysis Mason suggests that 38,000 additional satellites will be built and launched by 2033 and the global space industry revenue will reach $1.7 trillion by 2032. Space has also been identified as a focus area for the incoming US administration.

In 2025, we expect to see new levels of tension emerge as private and public infrastructure increasingly intersect in space, shining a light on the lack of agreed upon cyber norms and the increasing challenge of protecting complex and remote space systems against modern cyber threats.  Historically focused on securing earth-bound networks and environments, the space industry will face challenges as post-orbit threats rise, with satellites moving up the target list.

The EU’s NIS2 Directive now recognizes the space sector as an essential entity that is subject to its most strict cybersecurity requirements. Will other jurisdictions follow suit? We expect global debates about cyber vulnerabilities in space to come to the forefront as we become more reliant on space-based technology.

Conclusion: Preparing for the future

Whatever 2025 brings, Darktrace is committed to providing robust cybersecurity leadership and solutions to enterprises around the world. Our team of subject matter experts will continue to monitor emerging threat trends, advising both our customers and our product development teams.

And for day-to-day security, our multi-layered AI cybersecurity platform can protect against all types of threats, whether they are known, unknown, entirely novel, or powered by AI. It accomplishes this by learning what is normal for your unique organization, therefore identifying unusual and suspicious behavior at machine speed, regardless of existing rules and signatures. In this way, organizations with Darktrace can be ready for any developments in the cybersecurity threat landscape that the new year may bring.

Discover more about Darktrace's predictions on the AI and cybersecurity landscape for 2025 by joining the upcoming webinar on December 12, 2024 at 10:00am EST/3:00pm GMT. Register here.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
The Darktrace Community
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/

Ransomware

RansomHub Ransomware: investigación de Darktrace sobre la herramienta más nueva en ShadowSyndicate's Arsenal

Default blog imageDefault blog image

What is ShadowSyndicate?

ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].

What is RansomHub?

First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].

ShadowSyndicate and RansomHub

External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].

Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].

In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.

Darktrace’s coverage of ShadowSyndicate and RansomHub

Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.

Attack Overview

Timeline attack overview of ransomhub ransomware

Internal Reconnaissance

The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.

C2 Communication and Data Exfiltration

In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.

Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.

Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.

Lateral Movement

In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.

The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.

Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.
Figure 1: Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.

Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.

File Encryption

Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.

Figure 2: The graph shows the behavior of a device with encryption activity, using the “SMB Sustained Mimetype Conversion” and “Unusual Activity Events” metrics over three weeks.

Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.

Figure 3: Cyber AI Analyst panel showing the critical incidents of the affected device from one of the cases investigated.

In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.

Figure 4: A list of suggested Autonomous Response actions on the affected devices."

Conclusion

The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.

For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.

Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)

Appendices

Darktrace Model Detections

Antigena Models / Autonomous Response:

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / External Threat / Antigena File then New Outbound Block


Network Reconnaissance:

Device / Network Scan

Device / ICMP Address Scan

Device / RDP Scan
Device / Anomalous LDAP Root Searches
Anomalous Connection / SMB Enumeration
Device / Spike in LDAP Activity

C2:

Enhanced Monitoring - Device / Lateral Movement and C2 Activity

Enhanced Monitoring - Device / Initial Breach Chain Compromise

Enhanced Monitoring - Compromise / Suspicious File and C2

Compliance / Remote Management Tool On Server

Anomalous Connection / Outbound SSH to Unusual Port


External Data Transfer:

Enhanced Monitoring - Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Compliance / SSH to Rare External Destination

Anomalous Connection / Application Protocol on Uncommon Port

Enhanced Monitoring - Anomalous File / Numeric File Download

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous Server Activity / Outgoing from Server

Device / Large Number of Connections to New Endpoints

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Lateral Movement:

User / New Admin Credentials on Server

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous File / Internal / Executable Uploaded to DC

Anomalous Connection / Suspicious Activity On High Risk Device

File Encryption:

Compliance / SMB Drive Write

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Anomalous Connection / Suspicious Read Write Ratio

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

83.97.73[.]198 - IP - Data exfiltration endpoint

108.181.182[.]143 - IP - Data exfiltration endpoint

46.161.27[.]151 - IP - Data exfiltration endpoint

185.65.212[.]164 - IP - Data exfiltration endpoint

66[.]203.125.21 - IP - MEGA endpoint used for data exfiltration

89[.]44.168.207 - IP - MEGA endpoint used for data exfiltration

185[.]206.24.31 - IP - MEGA endpoint used for data exfiltration

31[.]216.148.33 - IP - MEGA endpoint used for data exfiltration

104.226.39[.]18 - IP - C2 endpoint

103.253.40[.]87 - IP - C2 endpoint

*.relay.splashtop[.]com - Hostname - C2 & data exfiltration endpoint

gfs***n***.userstorage.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

w.api.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

ams-rb9a-ss.ams.efscloud[.]net - Hostname - Data exfiltration endpoint

MITRE ATT&CK Mapping

Tactic - Technqiue

RECONNAISSANCE – T1592.004 Client Configurations

RECONNAISSANCE – T1590.005 IP Addresses

RECONNAISSANCE – T1595.001 Scanning IP Blocks

RECONNAISSANCE – T1595.002 Vulnerability Scanning

DISCOVERY – T1046 Network Service Scanning

DISCOVERY – T1018 Remote System Discovery

DISCOVERY – T1083 File and Directory Discovery
INITIAL ACCESS - T1189 Drive-by Compromise

INITIAL ACCESS - T1190 Exploit Public-Facing Application

COMMAND AND CONTROL - T1001 Data Obfuscation

COMMAND AND CONTROL - T1071 Application Layer Protocol

COMMAND AND CONTROL - T1071.001 Web Protocols

COMMAND AND CONTROL - T1573.001 Symmetric Cryptography

COMMAND AND CONTROL - T1571 Non-Standard Port

DEFENSE EVASION – T1078 Valid Accounts

DEFENSE EVASION – T1550.002 Pass the Hash

LATERAL MOVEMENT - T1021.004 SSH

LATERAL MOVEMENT – T1080 Taint Shared Content

LATERAL MOVEMENT – T1570 Lateral Tool Transfer

LATERAL MOVEMENT – T1021.002 SMB/Windows Admin Shares

COLLECTION - T1185 Man in the Browser

EXFILTRATION - T1041 Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 Exfiltration to Cloud Storage

EXFILTRATION - T1029 Scheduled Transfer

IMPACT – T1486 Data Encrypted for Impact

References

1.     https://www.group-ib.com/blog/shadowsyndicate-raas/

2.     https://www.techtarget.com/searchsecurity/news/366617096/ESET-RansomHub-most-active-ransomware-group-in-H2-2024

3.     https://cyberint.com/blog/research/ransomhub-the-new-kid-on-the-block-to-know/

4.     https://www.cisa.gov/sites/default/files/2024-05/AA24-131A.stix_.xml

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore
Your data. Our AI.
Elevate your network security with Darktrace AI