Blog
/
Network
/
June 20, 2024

Post-Exploitation Activities on PAN-OS Devices: A Network-Based Analysis

This blog investigates the network-based activity detected by Darktrace in compromises stemming from the exploitation of a vulnerability in Palo Alto Networks firewall devices, namely CVE-2024-3400.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Jun 2024

Update:
Following the initial publication of this blog detailing exploitation campaigns utilizing the recently disclosed vulnerability, Darktrace analysts expanded the scope of the threat research investigation to identify potential earlier, pre-CVE disclosure, exploitation of CVE 2024-3400. While the majority of PAN-OS exploitation activity seen in the Darktrace customer base occurred after the public release of the CVE, Darktrace did also see tooling activity likely related to CVE-2024-3400 exploitation prior to the vulnerability's disclosure. Unlike the post-CVE-release exploitation activity, which largely reflected indiscriminate, opportunistic targeting of unpatched systems, these pre-CVE release activities likely represented selective targeting by more calculated actors.

Between March 26 and 28, Darktrace identified two Palo Alto firewall devices within the network of a public sector customer making HTTP GET requests utilizing both cURL and wget user agents, versions of which were seen in later compromise activity in April. The devices requested multiple shell script files (.sh) from rare external IP addresses. These IPs are likely associated with an operational relay box (ORB) network[1]. The connections also occurred without a specified hostname lookup, suggesting the IPs were hardcoded into process code or already cached through unexpected running processes. One of the destination IPs was later confirmed by Palo Alto Network’s Unit 42 as associated with exploitation of the PAN-OS vulnerability[2]. This observed activity closely resembles post-exploitation activity seen on affected firewall devices in mid-April. However, unlike the more disruptive and noisier follow-on exploitation activity seen in post-CVE-release incidents, the pre-CVE-release case observed by Darktrace appears to have been much more discreet, likely due to the relevant threat actor's desire to remain undetected.

--

Introduction

Perimeter devices such as firewalls, virtual private networks (VPNs), and intrusion prevention systems (IPS), have long been the target of adversarial actors attempting to gain access to internal networks. However, recent publications and public service announcements by leading public institutions underscore the increased emphasis threat actors are putting on leveraging such products to initiate compromises.

A blog post by the UK National Cyber Security Center (NCSC) released in early 2024 notes that as improvements are made in the detection of phishing email payloads, threat actors have again begun re-focusing efforts to exploiting network edge devices, many of which are not secure by design, as a means of breach initiation.[i] As such, it comes as no surprise that new Common Vulnerabilities and Exposures (CVEs) are constantly discovered that exploit such internet-exposed systems.

Darktrace analysts frequently observe the impacts of such CVEs first through their investigations via Darktrace’s Security Operations Center (SOC). Beginning in April 2024, Darktrace’s SOC began handling alerts and customer requests for potential incidents involving Palo Alto Networks firewall devices.  Just days prior, external researchers publicly disclosed what would later be classified as PAN-OS CVE-2024-3400, a form of remote command execution vulnerability that affects several versions of Palo Alto Networks’ firewall operating system (PAN-OS), namely PAN-OS 11.1, 11.0 and 10.2. At the time, multiple Darktrace customers were unaware of the recently announced vulnerability.

The increase in observed SOC activity for Palo Alto firewall devices, coupled with the public announcement of the new CVE prompted Darktrace researchers to look for evidence of PAN-OS exploitation on customer networks. Researchers also focused on documenting post-exploitation activity from threat actors leveraging the recently disclosed vulnerability.

As such, this blog highlights the network-based behaviors involved in the CVE-2024-3400 attack chains investigated by Darktrace’s SOC and Threat Research teams. Moreover, this investigation also provides a deeper insight into the post-compromise activities of threat actors leveraging the novel CVE.  Such insights will not only prove relevant for cybersecurity teams looking to inhibit compromises in this specific instance, but also highlights general patterns of behavior by threat actors utilizing such CVEs to target internet-facing systems.

CVE-2024-3400

In mid-April 2024, the Darktrace SOC observed an uptick in activity involving recurring patterns of malicious activity from Palo Alto firewall appliances. In response to this trend, Darktrace initiated a Threat Research investigation into such activity to try and identify common factors and indicators across seemingly parallel events. Shortly before the Threat Research team opened their investigation, external researchers provided public details of CVE-2024-3400, a form of remote command execution vulnerability in the GlobalProtect feature on Palo Alto Network firewall devices running PAN-OS versions: 10.2, 11.0, and 11.1.[ii]

In their proof of concept, security researchers at watchTowr demonstrated how an attacker can pass session ID (SESSID) values to these PAN-OS devices to request files that do not exist. In response, the system creates a zero-byte file with root privileges with the same name.[iii] Log data is passed on devices running telemetry services to external servers through command line functionality.[iv] Given this functionality, external actors could then request non-existent files in the SESSID containing command parameters which then be interpreted by the command line functionality.[v] Although researchers first believed the exploit could only be used against devices running telemetry services, this was later discovered to be untrue.[vi]

As details of CVE-2024-3400 began to surface, Darktrace’s Threat Research analysts quickly identified distinct overlaps in the observed activity on specific customer deployments and the post-exploitation behavior reported by external researchers. Given the parallels, Darktrace correlated the patterns of activity observed by the SOC team to exploitation of the newly discovered vulnerability in PAN-OS firewall appliances.

Campaign Analysis

Between the April and May 2024, Darktrace identified four main themes of post-exploitation activity involving Palo Alto Network firewall devices likely targeted via CVE-2024-3400: exploitation validation, shell command and tool retrieval, configuration data exfiltration, and ongoing command and control through encrypted channels and application protocols.

1. Exploit Validation and Further Vulnerability Enumeration

Many of the investigated attack chains began with malicious actors using out-of-band application security testing (OAST) services such as Interactsh to validate exploits against Palo Alto firewall appliances. This exploit validation activity typically resulted in devices attempting to contact unusual external endpoints (namely, subdomains of ‘oast[.]pro’, ‘oast[.]live’, ‘oast[.]site’, ‘oast[.]online’, ‘oast[.]fun’, ‘oast[.]me’, and ‘g3n[.]in’) associated with OAST services such as Interactsh. These services can be used by developers to inspect and debug internet traffic, but also have been easily abused by threat actors.

While attempted connections to OAST services do not alone indicate CVE-2024-3400 exploitation, the prevalence of such activities in observed Palo Alto firewall attack chains suggests widespread usage of these OAST services to validate initial access methods and possibly further enumerate systems for additional vulnerabilities.

Figure 1: Model alert log details showcasing a PAN-OS device making DNS queries for Interactsh domain names in what could be exploit validation, and/or further host enumeration.

2. Command and Payload Transmission

The most common feature across analyzed incidents was HTTP GET requests for shell scripts and Linux executable files (ELF) from external IPs associated with exploitation of the CVE. These HTTP requests were frequently initiated using the utilities, cURL and wget. On nearly every device likely targeted by threat actors leveraging the CVE, Darktrace analysts highlighted the retrieval of shell scripts that either featured enumeration commands, the removal of evidence of compromise activity, or commands to retrieve and start binaries on the destination device.

a) Shell Script Retrieval

Investigated devices commonly performed HTTP GET requests to retrieve shell command scripts. Despite this commonality, there was some degree of variety amongst the retrieved payloads and their affiliation with certain command tools. Several distinct types of shell commands and files were identified during the analyzed breaches. For example, some firewall devices were seen requesting .txt files associated with both Sliver C2, whose malicious use has previously been investigated by Darktrace, and Cobalt Strike. The target URIs of devices’ HTTP requests for these files included, “36shr.txt”, “2.txt”, “bin.txt”, and “data.txt”.

More interestingly, though, was the frequency with which analyzed systems requested bash scripts from rare external IP addresses, sometimes over non-standard ports for the HTTP protocol. These bash scripts would feature commands usually for the recipient system to check for certain existing files and or running processes. If the file did not exist, the system would then use cURL or wget to obtain content from external sites, change the permissions of the file, and then execute, sending output to dev/null as a means of likely defense evasion. In some scripts, the system would first make a new folder, and change directories prior to acquiring external content. Additionally, some samples highlighted multiple attempts at enumeration of the host system.

Figure 2: Packet capture (PCAP) data highlighting the incoming shell scripts providing instructions to use cURL to obtain external content, change the permissions of the file to execute, and then run the binary using the credentials and details provided.
Figure 3: PCAP data highlighting a variation of a shell script seen in an HTTP response processed by compromised devices. The script provides instructions to make a directory, retrieve and execute external content, and to hide the output.

Not every retrieved file that was not explicitly a binary featured bash scripts. Model alerts on some deployments also included file masquerading attempts by threat actors, whereby the Palo Alto firewall device would request content with a misleading extension in the URI. In one such instance, the requested URI, and HTTP response header suggests the returned content is an image/png, but the actual body response featured configuration parameters for a new daemon service to be run on the system.

Figure 4: PCAP data indicating configuration details likely for a new daemon on an investigated host. Such HTTP body content differs from the image/png extension within the request URI and declared content type in the HTTP response header.

Bash scripts analyzed across customer deployments also mirrored those identified by external security teams. External researchers previously reported on a series of identifiable shell commands in some cases of CVE-2024-3400 exploitation analyzed by their teams. Commands frequently involved a persistence mechanism they later labeled as the “UPSTYLE” backdoor.[vii]  This python-based program operates by reading commands hidden in error logs generated by 404 requests to the compromised server. The backdoor interprets the requests and writes the output to CSS files on the device. In many cases, Darktrace’s Threat Research team noted clear parallels between shell commands retrieved via HTTP GET request with those directly involving UPSTYLE. There were also matches with some URI patterns identified with the backdoor and requests observed on Darktrace deployments.

Figure 5: HTTP response data containing shell commands potentially relating to the UPSTYLE backdoor.

The presence of these UPSTYLE-related shell commands in response to Palo Alto firewall devices’ HTTP requests provides further evidence for initial exploitation of the CVE. Many bash scripts in examined cases interacted with folders and files likely related to CVE-2024-3400 exploitation. These scripts frequently sought to delete contents of certain folders, such as “/opt/panlogs/tmp/device_telemetry/minute/*” where evidence of exploitation would likely reside. Moreover, recursive removal and copy commands were frequently seen targeting CSS files within the GlobalProtect folder, already noted as the vulnerable element within PAN-OS versions. This evidence is further corroborated by host-based forensic analysis conducted by external researchers.[viii]

Figure 6: PCAP data from investigated system indicating likely defense evasion by removing content on folders where CVE exploitation occurred.

b) Executable File Retrieval

Typically, following command processing, compromised Palo Alto firewall devices proceeded to make web requests for several unusual and potentially malicious files. Many such executables would be retrieved via processed scripts. While there a fair amount of variety in specific executables and binaries obtained, overall, these executables involved either further command tooling such as Sliver C2 or Cobalt Strike payloads, or unknown executables. Affected systems would also employ uncommon ports for HTTP connections, in a likely attempt to evade detection. Extensions featured within the URI, when visible, frequently noted ‘.elf’ (Linux executable) or ‘.exe’ payloads. While most derived hashes did not feature identifiable open-source intelligence (OSINT) details, some samples did have external information tying the sample to specific malware. For example, one such investigation featured a compromised system requesting a file with a hash identified as the Spark malware (backdoor) while another investigated case included a host requesting a known crypto-miner.

Figure 7: PCAP data highlighting compromised system retrieving ELF content from a rare external server running a simple Python HTTP server.
Figure 8: Darktrace model alert logs highlighting a device labeled “Palo Alto” making a HTTP request on an uncommon port for an executable file following likely CVE exploitation.

3. Configuration Data Exfiltration and Unusual HTTP POST Activity

During Darktrace’s investigations, there were also several instances of sensitive data exfiltration from PAN-OS firewall devices. Specifically, targeted systems were observed making HTTP POST requests via destination port 80 to rare external endpoints that OSINT sources associate with CVE-2024-3400 exploitation and activity. PCAP analysis of such HTTP requests revealed that they often contained sensitive configuration details of the targeted Palo Alto firewall devices, including the IP address, default gateway, domain, users, superusers, and password hashes, to name only a few. Threat actors frequently utilized Target URIs such as “/upload” in their HTTP POST requests of this multi-part boundary form data. Again, the User-Agent headers of these HTTP requests largely involved versions of cURL, typically 7.6.1, and wget.

Figure 9: PCAP datahighlighting Palo Alto Firewall device running vulnerable version of PAN-OSposting configuration details to rare external services via HTTP.
Figure 10: Model alert logs highlighting a Palo Alto firewall device performing HTTP POSTs to a rare external IP, without a prior hostname lookup, on an uncommon port using a URI associated with configuration data exfiltration across analyzed incidents
Figure 11: Examples of TargetURIs of HTTP POST requests involving base64 encoded IPs and potential dataegress.

4. Ongoing C2 and Miscellaneous Activity

Lastly, a smaller number of affected Palo Alto firewall devices were seen engaging in repeated beaconing and/or C2 communication via both encrypted and unencrypted protocols during and following the initial series of kill chain events. Such encrypted channels typically involved protocols such as TLS/SSL and SSH. This activity likely represented ongoing communication of targeted systems with attacker infrastructure. Model alerts typically highlighted unusual levels of repeated external connectivity to rare external IP addresses over varying lengths of time. In some investigated incidents, beaconing activity consisted of hundreds of thousands of connections over several days.

Figure 12:  Advanced search details highlighting high levels of ongoing external communication to endpoints associated with C2 infrastructure exploiting CVE-2024-3400.

Some beaconing activity appears to have involved the use of the WebSocket protocol, as indicated by the appearance of “/ws” URIs and validated within packet captures. Such connections were then upgraded to an encrypted connection.

Figure 13:  PCAP highlighting use of WebSocket protocol to engage in ongoing external connectivity to likely C2 infrastructure following CVE-2024-3400 compromise.

While not directly visible in all the deployments, some investigations also yielded evidence of attempts at further post-exploitation activity. For example, a handful of the analyzed binaries that were downloaded by examined devices had OSINT information suggesting a relation to crypto-mining malware strains. However, crypto-mining activity was not directly observed at this time. Furthermore, several devices also triggered model alerts relating to brute-forcing activity via several authentication protocols (namely, Keberos and RADIUS) during the time of compromise. This brute-force activity likely represented attempts to move laterally from the affected firewall system to deeper parts of the network.

Figure 14: Model alert logs noting repeated SSL connectivity to a Sliver C2-affiliated endpoint in what likely constitutes C2 connectivity.
Figure 15: Model alert logs featuring repeated RADIUS login failures from a compromised PAN-OS device using generic usernames, suggesting brute-force activity.

Conclusion

Between April and late May 2024, Darktrace’s SOC and Threat Research teams identified several instances of likely PAN-OS CVE-2024-3400 exploitation across the Darktrace customer base. The subsequent investigation yielded four major themes that categorize the observed network-based post-exploitation activity. These major themes were exploit validation activity, retrieval of binaries and shell scripts, data exfiltration via HTTP POST activity, and ongoing C2 communication with rare external endpoints. The insights shared in this article will hopefully contribute to the ongoing discussion within the cybersecurity community about how to handle the likely continued exploitation of this vulnerability. Moreover, this article may also help cybersecurity professionals better respond to future exploitation of not only Palo Alto PAN-OS firewall devices, but also of edge devices more broadly.

Threat actors will continue to discover and leverage new CVEs impacting edge infrastructure. Since it is not yet known which CVEs threat actors will exploit next, relying on rules and signatures for the detection of exploitation of such CVEs is not a viable approach. Darktrace’s anomaly-based approach to threat detection, however, is well positioned to robustly adapt to threat actors’ changing methods, since although threat actors can change the CVEs they exploit, they cannot change the fact that their exploitation of CVEs results in highly unusual patterns of activity.

Credit to Adam Potter, Cyber Analyst, Sam Lister, Senior Cyber Analyst

Appendices

Pre-CVE-Release IoCs

38.54[.]104[.]14/3.sh
154.223[.]16[.]34/1.sh
154.223[.]16[.]34/co.sh
38.54[.]104[.]14/

Indicators of Compromise

Indicator – Type – Description

94.131.120[.]80              IP             C2 Endpoint

94.131.120[.]80:53/?src=[REDACTED]=hour=root                  URL        C2/Exfiltration Endpoint

134.213.29[.]14/?src=[REDACTED]min=root             URL        C2/Exfiltration Endpoint

134.213.29[.]14/grep[.]mips64            URL        Payload

134.213.29[.]14/grep[.]x86_64             URL        Payload

134.213.29[.]14/?deer               URL        Payload

134.213.29[.]14/?host=IDS   URL        Payload

134.213.29[.]14/ldr[.]sh           URL        Payload

91ebcea4e6d34fd6e22f99713eaf67571b51ab01  SHA1 File Hash               Payload

185.243.115[.]250/snmpd2[.]elf        URL        Payload

23.163.0[.]111/com   URL        Payload

80.92.205[.]239/upload            URL        C2/Exfiltration Endpoint

194.36.171[.]43/upload            URL        C2/Exfiltration Endpoint

update.gl-protect[.]com          Hostname         C2 Endpoint

update.gl-protect[.]com:63869/snmpgp      URL        Payload

146.70.87[.]237              IP address         C2 Endpoint

146.70.87[.]237:63867/snmpdd         URL        Payload

393c41b3ceab4beecf365285e8bdf0546f41efad   SHA1 File Hash               Payload

138.68.44[.]59/app/r URL        Payload

138.68.44[.]59/app/clientr     URL        Payload

138.68.44[.]59/manage            URL        Payload

72.5.43[.]90/patch      URL        Payload

217.69.3[.]218                 IP             C2 Endpoint

5e8387c24b75c778c920f8aa38e4d3882cc6d306                  SHA1 File Hash               Payload

217.69.3[.]218/snmpd[.]elf   URL        Payload

958f13da6ccf98fcaa270a6e24f83b1a4832938a    SHA1 File Hash               Payload

6708dc41b15b892279af2947f143af95fb9efe6e     SHA1 File Hash               Payload

dc50c0de7f24baf03d4f4c6fdf6c366d2fcfbe6c       SHA1 File Hash               Payload

109.120.178[.]253:10000/data[.]txt                  URL        Payload

109.120.178[.]253:10000/bin[.]txt   URL        Payload

bc9dc2e42654e2179210d98f77822723740a5ba6                 SHA1 File Hash               Payload

109.120.178[.]253:10000/123              URL        Payload

65283921da4e8b5eabb926e60ca9ad3d087e67fa                 SHA1 File Hash               Payload

img.dxyjg[.]com/6hiryXjZN0Mx[.]sh                  URL        Payload

149.56.18[.]189/IC4nzNvf7w/2[.]txt                 URL        Payload

228d05fd92ec4d19659d71693198564ae6f6b117 SHA1 File Hash               Payload

54b892b8fdab7c07e1e123340d800e7ed0386600                 SHA1 File Hash               Payload

165.232.121[.]217/rules          URL        Payload

165.232.121[.]217/app/request          URL        Payload

938faec77ebdac758587bba999e470785253edaf SHA1 File Hash               Payload

165.232.121[.]217/app/request63   URL        Payload

165.232.121[.]217:4443/termite/165.232.121[.]217             URL        Payload

92.118.112[.]60/snmpd2[.]elf               URL        Payload

2a90d481a7134d66e8b7886cdfe98d9c1264a386                 SHA1 File Hash               Payload

92.118.112[.]60/36shr[.]txt   URL        Payload

d6a33673cedb12811dde03a705e1302464d8227f                 SHA1 File Hash               Payload

c712712a563fe09fa525dfc01ce13564e3d98d67  SHA1 File Hash               Payload

091b3b33e0d1b55852167c3069afcdb0af5e5e79 SHA1 File Hash               Payload

5eebf7518325e6d3a0fd7da2c53e7d229d7b74b6                  SHA1 File Hash               Payload

183be7a0c958f5ed4816c781a2d7d5aa8a0bca9f SHA1 File Hash               Payload

e7d2f1224546b17d805617d02ade91a9a20e783e                 SHA1 File Hash               Payload

e6137a15df66054e4c97e1f4b8181798985b480d SHA1 File Hash               Payload

95.164.7[.]33:53/sea[.]png    URL        Payload

95.164.7[.]33/rules     URL        Payload

95.164.7[.]33:53/lb64                URL        Payload

c2bc9a7657bea17792048902ccf2d77a2f50d2d7 SHA1 File Hash               Payload

923369bbb86b9a9ccf42ba6f0d022b1cd4f33e9d SHA1 File Hash               Payload

52972a971a05b842c6b90c581b5c697f740cb5b9                 SHA1 File Hash               Payload

95d45b455cf62186c272c03d6253fef65227f63a    SHA1 File Hash               Payload

322ec0942cef33b4c55e5e939407cd02e295973e                  SHA1 File Hash               Payload

6335e08873b4ca3d0eac1ea265f89a9ef29023f2  SHA1 File Hash               Payload

134.213.29[.]14              IP             C2 Endpoint

185.243.115[.]250       IP             C2 Endpoint

80.92.205[.]239              IP             C2 Endpoint

194.36.171[.]43              IP             C2 Endpoint

92.118.112[.]60              IP             C2 Endpoint

109.120.178[.]253       IP             C2 Endpoint

23.163.0[.]111                 IP             C2 Endpoint

72.5.43[.]90     IP             C2 Endpoint

165.232.121[.]217       IP             C2 Endpoint

8.210.242[.]112              IP             C2 Endpoint

149.56.18[.]189              IP             C2 Endpoint

95.164.7[.]33  IP             C2 Endpoint

138.68.44[.]59                 IP             C2 Endpoint

Img[.]dxyjg[.]com         Hostname         C2 Endpoint

Darktrace Model Alert Coverage

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Device / New User Agent (triggered by pre-CVE-release activity)

·      Anomalous File / Script from Rare External Location (triggered by pre-CVE-release activity)

·      Anomalous File / Masqueraded File Transfer

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External Locations

·      Anomalous File / Script and EXE from Rare External

·      Anomalous File / Suspicious Octet Stream Download

·      Anomalous File / Numeric File Download

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·      Anomalous Connection / Suspicious Self-Signed SSL

·      Anomalous Connection / Anomalous SSL without SNI to New External

·      Anomalous Connection / Multiple Connections to New External TCP Port

·      Anomalous Connection / Rare External SSL Self-Signed

·      Anomalous Server Activity / Outgoing from Server

·      Anomalous Server Activity / Rare External from Server

·      Compromise / SSH Beacon

·      Compromise / Beacon for 4 Days

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Compromise / High Priority Tunnelling to Bin Services

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / Connection to Suspicious SSL Server

·      Compromise / Suspicious File and C2

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Slow Beaconing Activity To External Rare

·      Compromise / HTTP Beaconing to New Endpoint

·      Compromise / SSL or HTTP Beacon

·      Compromise / Suspicious HTTP and Anomalous Activity

·      Compromise / Beacon to Young Endpoint

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Suspicious Beaconing Behaviour

·      Compliance / SSH to Rare External Destination

·      Compromise / HTTP Beaconing to Rare Destination

·      Compromise / Beaconing Activity To External Rare

·      Device / Initial Breach Chain Compromise

·      Device / Multiple C2 Model Breaches

MITRE ATTACK Mapping

Tactic – Technique

Initial Access  T1190 – Exploiting Public-Facing Application

Execution           T1059.004 – Command and Scripting Interpreter: Unix Shell

Persistence      T1543.002 – Create or Modify System Processes: Systemd Service

Defense Evasion           T1070.004 – Indicator Removal: File Deletion

Credential Access       T1110.001 – Brute Force: Password Guessing

Discovery           T1083 – File and System Discovery

T1057 – Process Discovery

Collection         T1005 – Data From Local System

Command and Control            

T1071.001 – Application Layer Protocol:  Web Protocols

T1573.002 – Encrypted Channel: Asymmetric Cryptography

T1571 – Non-Standard Port

T1105 – Ingress Tool Transfer

Exfiltration        

T1041 – Exfiltration over C2 Protocol

T1048.002 - Exfiltration Over Alternative Protocol: Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

References

[1] https://cloud.google.com/blog/topics/threat-intelligence/china-nexus-espionage-orb-networks

[2] https://unit42.paloaltonetworks.com/cve-2024-3400/

[i]  https://www.ncsc.gov.uk/blog-post/products-on-your-perimeter

[ii] https://security.paloaltonetworks.com/CVE-2024-3400

[iii] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[iv] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[v] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[vi] https://security.paloaltonetworks.com/CVE-2024-3400

[vii] https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400/

[viii] https://www.volexity.com/blog/2024/05/15/detecting-compromise-of-cve-2024-3400-on-palo-alto-networks-globalprotect-devices/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Identity

/

May 23, 2025

From Rockstar2FA to FlowerStorm: Investigating a Blooming Phishing-as-a-Service Platform

man on computerDefault blog imageDefault blog image

What is FlowerStorm?

FlowerStorm is a Phishing-as-a-Service (PhaaS) platform believed to have gained traction following the decline of the former PhaaS platform Rockstar2FA. It employs Adversary-in-the-Middle (AitM) attacks to target Microsoft 365 credentials. After Rockstar2FA appeared to go dormant, similar PhaaS portals began to emerge under the name FlowerStorm. This naming is likely linked to the plant-themed terminology found in the HTML titles of its phishing pages, such as 'Sprout' and 'Blossom'. Given the abrupt disappearance of Rockstar2FA and the near-immediate rise of FlowerStorm, it is possible that the operators rebranded to reduce exposure [1].

External researchers identified several similarities between Rockstar2FA and FlowerStorm, suggesting a shared operational overlap. Both use fake login pages, typically spoofing Microsoft, to steal credentials and multi-factor authentication (MFA) tokens, with backend infrastructure hosted on .ru and .com domains. Their phishing kits use very similar HTML structures, including randomized comments, Cloudflare turnstile elements, and fake security prompts. Despite Rockstar2FA typically being known for using automotive themes in their HTML titles, while FlowerStorm shifted to a more botanical theme, the overall design remained consistent [1].

Despite these stylistic differences, both platforms use similar credential capture methods and support MFA bypass. Their domain registration patterns and synchronized activity spikes through late 2024 suggest shared tooling or coordination [1].

FlowerStorm, like Rockstar2FA, also uses their phishing portal to mimic legitimate login pages such as Microsoft 365 for the purpose of stealing credentials and MFA tokens while the portals are relying heavily on backend servers using top-level domains (TLDs) such as .ru, .moscow, and .com. Starting in June 2024, some of the phishing pages began utilizing Cloudflare services with domains such as pages[.]dev. Additionally, usage of the file “next.php” is used to communicate with their backend servers for exfiltration and data communication. FlowerStorm’s platform focuses on credential harvesting using fields such as email, pass, and session tracking tokens in addition to supporting email validation and MFA authentications via their backend systems [1].

Darktrace’s coverage of FlowerStorm Microsoft phishing

While multiple suspected instances of the FlowerStorm PhaaS platform were identified during Darktrace’s investigation, this blog will focus on a specific case from March 2025. Darktrace’s Threat Research team analyzed the affected customer environment and discovered that threat actors were accessing a Software-as-a-Service (SaaS) account from several rare external IP addresses and ASNs.

Around a week before the first indicators of FlowerStorm were observed, Darktrace detected anomalous logins via Microsoft Office 365 products, including Office365 Shell WCSS-Client and Microsoft PowerApps.  Although not confirmed in this instance, Microsoft PowerApps could potentially be leveraged by attackers to create phishing applications or exploit vulnerabilities in data connections [2].

Darktrace’s detection of the unusual SaaS credential use.
Figure 1: Darktrace’s detection of the unusual SaaS credential use.

Following this initial login, Darktrace observed subsequent login activity from the rare source IP, 69.49.230[.]198. Multiple open-source intelligence (OSINT) sources have since associated this IP with the FlowerStorm PhaaS operation [3][4].  Darktrace then observed the SaaS user resetting the password on the Core Directory of the Azure Active Directory using the user agent, O365AdminPortal.

Given FlowerStorm’s known use of AitM attacks targeting Microsoft 365 credentials, it seems highly likely that this activity represents an attacker who previously harvested credentials and is now attempting to escalate their privileges within the target network.

Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.
Figure 2: Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.

Notably, Darktrace’s Cyber AI Analyst also detected anomalies during a number of these login attempts, which is significant given FlowerStorm’s known capability to bypass MFA and steal session tokens.

Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Figure 3: Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.
Figure 4: Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.

In response to the suspicious SaaS activity, Darktrace recommended several Autonomous Response actions to contain the threat. These included blocking the user from making further connections to the unusual IP address 69.49.230[.]198 and disabling the user account to prevent any additional malicious activity. In this instance, Darktrace’s Autonomous Response was configured in Human Confirmation mode, requiring manual approval from the customer’s security team before any mitigative actions could be applied. Had the system been configured for full autonomous response, it would have immediately blocked the suspicious connections and disabled any users deviating from their expected behavior—significantly reducing the window of opportunity for attackers.

Figure 5: Autonomous Response Actions recommended on this account behavior; This would result in disabling the user and blocking further sign-in activity from the source IP.

Conclusion

The FlowerStorm platform, along with its predecessor, RockStar2FA is a PhaaS platform known to leverage AitM attacks to steal user credentials and bypass MFA, with threat actors adopting increasingly sophisticated toolkits and techniques to carry out their attacks.

In this incident observed within a Darktrace customer's SaaS environment, Darktrace detected suspicious login activity involving abnormal VPN usage from a previously unseen IP address, which was subsequently linked to the FlowerStorm PhaaS platform. The subsequent activity, specifically a password reset, was deemed highly suspicious and likely indicative of an attacker having obtained SaaS credentials through a prior credential harvesting attack.

Darktrace’s prompt detection of these SaaS anomalies and timely notifications from its Security Operations Centre (SOC) enabled the customer to mitigate and remediate the threat before attackers could escalate privileges and advance the attack, effectively shutting it down in its early stages.

Credit to Justin Torres (Senior Cyber Analyst), Vivek Rajan (Cyber Analyst), Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Alert Detections

·      SaaS / Access / M365 High Risk Level Login

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login from Rare High-Risk Endpoint

·      SaaS / Compromise / SaaS Anomaly Following Anomalous Login

·      SaaS / Compromise / Unusual Login and Account Update

·      SaaS / Unusual Activity / Unusual MFA Auth and SaaS Activity

Cyber AI Analyst Coverage

·      Suspicious Access of Azure Active Directory  

·      Suspicious Access of Azure Active Directory  

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

69.49.230[.]198 – Source IP – Malicious IP Associated with FlowerStorm, Observed in Login Activity

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

References:

[1] https://news.sophos.com/en-us/2024/12/19/phishing-platform-rockstar-2fa-trips-and-flowerstorm-picks-up-the-pieces/

[2] https://learn.microsoft.com/en-us/security/operations/incident-response-playbook-compromised-malicious-app

[3] https://www.virustotal.com/gui/ip-address/69.49.230.198/community

[4] https://otx.alienvault.com/indicator/ip/69.49.230.198

Continue reading
About the author
Justin Torres
Cyber Analyst

Blog

/

Network

/

May 23, 2025

Defending the Frontlines: Proactive Cybersecurity in Local Government

Default blog imageDefault blog image

Serving a population of over 165,000 citizens, this county government delivers essential services that enhance the quality of life for all of its residents in Florida, United States. From public safety and works to law enforcement, economic development, health, and community services, the county’s cybersecurity strategy plays a foundational role in protecting its citizens.

From flying blind to seeing the bigger picture

Safeguarding data from multiple systems, service providers, and citizens is a key aspect of the County’s Systems Management remit. Protecting sensitive information while enabling smooth engagement with multiple external partners poses a unique challenge; the types of data and potential threats are continuously evolving, but resources – both human and financial – remain consistently tight.

When the Chief Information Officer took on his role in 2024, building out a responsive defense-in-depth strategy was central to achieving these goals. However, with limited resources and complex needs, his small security team was struggling with high alert volumes, inefficient tools, and time-consuming investigations that frequently led nowhere.

Meanwhile, issues like insider threats, Denial of Service (DoS), and phishing attacks were growing; the inefficiencies were creating serious security vulnerabilities. As the CIO put it, he was flying blind. With so much data coming in, security analysts were in danger of missing the bigger picture.

“We would just see a single portion of data that could send us down a rabbit hole, thinking something’s going on – only to find out after spending days, weeks, or even months that it was nothing. If you’re only seeing one piece of the issue, it’s really difficult to identify whether something is a legitimate threat or a false positive.”

Local government’s unique cybersecurity challenges

According to the CIO, even with a bigger team, aligning and comparing all the data into a comprehensive, bigger picture would be a major challenge. “The thing about local government specifically is that it’s a complex security environment. We bring together a lot of different individuals and organizations, from construction workers to people who bring projects into our community to better the County. What we work with varies from day to day.”

The challenge wasn’t just about identifying threats, but also about doing so quickly enough to respond before damage was done. The CIO said this was particularly concerning when dealing with sophisticated threats: “We’re dealing with nation-state attackers nowadays, as opposed to ‘script kiddies.’ There’s no time to lose. We’ve got to have cybersecurity that can respond as quickly as they can attack.”

To achieve this, among the most critical challenges the CIO and his team needed to address were:

  • Contextual awareness and visibility across the network: The County team lacked the granular visibility needed to identify potentially harmful behaviors. The IT team needed a tool that uncovered hidden activities and provided actionable insights, with minimal manual intervention.
  • Augmenting human expertise and improving response times: Hiring additional analysts to monitor the environment is prohibitively expensive for many local governments. The IT team needed a cybersecurity solution that could augment existing skills while automating day-to-day tasks. More effective resource allocation would drive improved response times.
  • Preventing email-based threats: Phishing and malicious email links present a persistent threat. The County team needed a way to flag, identify, and hold suspicious messages automatically and efficiently. Given the team’s public service remit, contextual awareness is crucial to ensuring that no legitimate communications are accidentally blocked. Accuracy is extremely important.
  • Securing access and managing insider threats: Having already managed insider threats posed by former staff members, the IT team wanted to adopt a more proactive, deterrent-based approach towards employee IT resource use, preventing incidents before they could occur.

Proactive cybersecurity

Recognizing these challenges, the CIO and County sought AI-driven solutions capable of acting autonomously to support a lean IT team and give the big picture view needed, without getting lost in false positive alerts.

Ease of deployment was another key requirement: the CIO wanted to quickly establish a security baseline for County that would not require extensive pre-planning or disrupt existing systems. Having worked with Darktrace in previous roles, he knew the solution had the capacity to make the critical connections he was looking for, while delivering fast response times and reducing the burden on security teams.

When every second counts, we want to be as close to the same resources as our attackers are utilizing. We have got to have something that can respond as quickly as they can attack. For the County, that’s Darktrace.” – CIO, County Systems Management Department.

Closing network visibility gaps with Darktrace / NETWORK

The County chose Darktrace / NETWORK for unparalleled visibility into the County’s network. With the solution in place, the CIO and his team were able to identify and address previously hidden activities, uncovering insider threats in unexpected places. For example, one team member had installed an unauthorized anonymizer plug-in on their browser, posing a potentially serious security risk via traffic being sent out to the internet. “Darktrace immediately alerted on it,” said CIO. “We were able to deal with the threat proactively and quickly.”

Darktrace / NETWORK continuously monitored and updated its understanding of the County environment, intelligently establishing the different behaviors and network activity. The end result was a level of context awareness that enabled the team to focus on the alerts that mattered most, saving time and effort.

“Darktrace brings all the data we need together, into one picture. We’re able to see what’s going on at a glance, as opposed to spending time trying to identify real threats from false positives,” said the CIO. The ability to automate actions freed the team up to focus on more complex tasks, with 66% of network response actions being applied autonomously, taking the right action at the right time to stop the earliest signs of threatening activity. This reduced pressure on the County’s team members, while buying valuable containment time to perform deeper investigations.

The agentless deployment advantage

For the CIO, one of the major benefits of Darktrace / NETWORK is that it’s agentless. “Agents alert attackers to the presence of security in your environment, it helps them to understand that there’s something else they need to bring down your defenses,” he said. Using Darktrace to mirror network traffic, the County can maintain full visibility across all network entities without alerting attackers and respond to threatening activity at machine speed. “It allows me to sleep better at night, knowing that this tool can effectively unplug the network cable from that device and bring it offline,” said CIO.

Streamlining investigations with Darktrace Cyber AI Analyst

For lean security teams, contextual awareness is crucial in reducing the burden of alert fatigue. Using Cyber AI Analyst, the County team is able to take the pressure off, automatically investigating every relevant event, and reducing thousands of individual alerts to only a small number of incidents that require manual review.

For the County team, the benefits are clear: 520 investigation hours saved in one month, with an average of just 11 minutes investigation time per incident. For the CIO, Darktrace goes beyond reducing workloads, it actually drives security: “It identifies threats almost instantly, bringing together logs and behaviors into a single, clear view.”

The efficiency gain has been so significant that the CIO believes Darktrace augments capabilities beyond the size of a team of analysts. “You could have three analysts working around the clock, but it’s hard to bring all those logs and behaviors together in one place and communicate everything in a coordinated way. Nothing does that as quickly as Darktrace can.”

Catching the threats from within: Defense in depth with Darktrace / IDENTITY

One of the key benefits of Darktrace for the County was its breadth of capability and responsiveness. “We’re looking at everything from multi-factor authentication, insider threats, distributed denial of service attacks,” said the CIO. “I’ve worked with other products in the past, but I’ve never found a tool as good as Darktrace.”

Further insider threats uncovered by Darktrace / IDENTITY included insecure access practices. Some users had logins and passwords on shared network resources or in plain-text files. Darktrace alerted the security team and the threats were mitigated before serious damage was done.

Darktrace / IDENTITY gives organizations advanced visibility of application user behavior from unusual authentication, password sprays, account takeover, resource theft, and admin abuse. Security teams can take targeted actions including the forced log-off of a user or temporary disabling of an account to give the team time to verify legitimacy.

First line of defense against the number one attack vector: Enhancing email security with Darktrace / EMAIL

Email-based threats, such as phishing, are among the most common attack vectors in modern cybersecurity, and a key vector for ransomware attacks. Post implementation performance was so strong that the organization now plans to retire other tools, cutting costs without compromising on security.

Darktrace / EMAIL was one of the first tools that I implemented when I started here,” said CIO. “I really recognize the value of it in our environment.” In addition to detecting and flagging potentially malicious email, the CIO said an unexpected benefit has been the reinforcement of more security-aware behaviors among end users. “People are checking their junk folders now, alerting us and checking to see if something is legitimate or not.”

The CIO said that, unlike traditional email security tools that basically perform only one function, Darktrace has multiple additional capabilities that deliver extra layers of protection compared to one-dimensional alternatives. For example, AI-employee feedback loops leverage insights gained from individual users to not only improve detection rates, but also provide end users with contextual security awareness training, to enhance greater understanding of the risks.

Straightforward integration, ease of use

The County wanted a powerful, responsive solution – without demanding pre-installation or integration needs, and with maximum ease of use. “The integration is relatively painless,” said the CIO. “That’s another real benefit, you can bring Darktrace into your environment and have it up and running faster than you could ever hire additional analysts to look at the same data.”

The team found that, compared to competing products, where there was extensive setup, overhead, and resources, “Darktrace is almost plug-and-play.” According to the CIO, the solution started ingesting information and providing notifications immediately: “You can turn on defense or response mechanisms at a granular level, for email or network – or both at the same time.”

The County sees Darktrace as an integral part of its cybersecurity strategy into the future. “Having worked with Darktrace in the past, it was an easy decision for me to agree to a multi-year partnership,” said the CIO “As we continue to build out our defense-in-depth strategy, the ability to use Darktrace to manage other data sources and identify new, additional behavior will be crucial to our proactive, risk-based approach.”

Darktrace has the capacity to meet the organization’s need for exceptional responsiveness, without burning out teams. “If you’re not overburdening the teams that you do have with significant workloads, they have a lot more agility to deal with things on the fly,” said the CIO.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI