Blog
/
AI
/
March 7, 2025

Darktrace's Early Detection of the Latest Ivanti Exploits

In January 2025, Ivanti disclosed two critical vulnerabilities affecting their products. Darktrace detected exploitation of these vulnerabilities as early as December 2024.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Hugh Turnbull
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Mar 2025

As reported in Darktrace’s 2024 Annual Threat Report, the exploitation of Common Vulnerabilities and Exposures (CVEs) in edge infrastructure has consistently been a significant concern across the threat landscape, with internet-facing assets remaining highly attractive to various threat actors.

Back in January 2024, the Darktrace Threat Research team investigated a surge of malicious activity from zero-day vulnerabilities such as those at the time on Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances. These vulnerabilities were disclosed by Ivanti in January 2024 as CVE-2023-46805 (Authentication bypass vulnerability) and CVE-2024-21887 (Command injection vulnerability), where these two together allowed for unauthenticated, remote code execution (RCE) on vulnerable Ivanti systems.

What are the latest vulnerabilities in Ivanti products?

In early January 2025, two new vulnerabilities were disclosed in Ivanti CS and PS, as well as their Zero Trust Access (ZTA) gateway products.

  • CVE-2025-0282: A stack-based buffer overflow vulnerability. Successful exploitation could lead to unauthenticated remote code execution, allowing attackers to execute arbitrary code on the affected system [1]
  • CVE-2025-0283: When combined with CVE-2025-0282, this vulnerability could allow a local authenticated attacker to escalate privileges, gaining higher-level access on the affected system [1]

Ivanti also released a statement noting they are currently not aware of any exploitation of CVE-2025-0283 at the time of disclosure [1].

Darktrace coverage of Ivanti

The Darktrace Threat Research team investigated the new Ivanti vulnerabilities across their customer base and discovered suspicious activity on two customer networks. Indicators of Compromise (IoCs) potentially indicative of successful exploitation of CVE-2025-0282 were identified as early as December 2024, 11 days before they had been publicly disclosed by Ivanti.

Case 1: December 2024

Authentication with a Privileged Credential

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024, when a customer device was observed logging into the network via SMB using the credential “svc_negbackups”, before authenticating with the credential “svc_negba” via RDP.

This likely represented a threat actor attempting to identify vulnerabilities within the system or application and escalate their privileges from a basic user account to a more privileged one. Darktrace / NETWORK recognized that the credential “svc_negbackups” was new for this device and therefore deemed it suspicious.

Darktrace / NETWORK’s detection of the unusual use of a new credential.
Figure 1: Darktrace / NETWORK’s detection of the unusual use of a new credential.

Likely Malicious File Download

Shortly after authentication with the privileged credential, Darktrace observed the device performing an SMB write to the C$ share, where a likely malicious executable file, ‘DeElevate64.exe’ was detected. While this is a legitimate Windows file, it can be abused by malicious actors for Dynamic-Link Library (DLL) sideloading, where malicious files are transferred onto other devices before executing malware. There have been external reports indicating that threat actors have utilized this technique when exploiting the Ivanti vulnerabilities [2].

Darktrace’s detection the SMB write of the likely malicious file ‘DeElevate64.exe’ on December 29, 2024.
Figure 2: Darktrace’s detection the SMB write of the likely malicious file ‘DeElevate64.exe’ on December 29, 2024.

Shortly after, a high volume of SMB login failures using the credential “svc_counteract-ext” was observed, suggesting potential brute forcing activity. The suspicious nature of this activity triggered an Enhanced Monitoring model alert that was escalated to Darktrace’s Security Operations Center (SOC) for further investigation and prompt notification, as the customer was subscribed to the Security Operations Support service.  Enhanced Monitoring are high-fidelity models detect activities that are more likely to be indicative of compromise

Suspicious Scanning and Internal Reconnaissance

Darktrace then went on to observe the device carrying out network scanning activity as well as anomalous ITaskScheduler activity. Threat actors can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The same device was also seen carrying out uncommon WMI activity.

Darktrace’s detection of a suspicious network scan from the compromised device.
Figure 3: Darktrace’s detection of a suspicious network scan from the compromised device.

Further information on the suspicious scanning activity retrieved by Cyber AI Analyst, including total number of connections and ports scanned.
Figure 4: Further information on the suspicious scanning activity retrieved by Cyber AI Analyst, including total number of connections and ports scanned.
Darktrace’s detection of a significant spike in WMI activity represented by DCE_RPC protocol request increases at the time, with little to no activity observed one week either side.
Figure 5: Darktrace’s detection of a significant spike in WMI activity represented by DCE_RPC protocol request increases at the time, with little to no activity observed one week either side.

Case 2: January 2025

Suspicious File Downloads

On January 13, 2025, Darktrace began to observe activity related to the exploitation of CVE-2025-0282  on the network of another customer, with one in particular device attempting to download likely malicious files.

Firstly, Darktrace observed the device making a GET request for the file “DeElevator64.dll” hosted on the IP 104.238.130[.]185. The device proceeded to download another file, this time “‘DeElevate64.exe”. from the same IP. This was followed by the download of “DeElevator64.dll”, similar to the case observed in December 2024. External reporting indicates that this DLL has been used by actors exploiting CVE-2025-0282 to sideload backdoor into infected systems [2]

Darktrace’s detection of the download of the suspicious file “DeElevator64.dll” on January 13, 2025.
Figure 6: Darktrace’s detection of the download of the suspicious file “DeElevator64.dll” on January 13, 2025.

Suspicious Internal Activity

Just like the previous case, on January 15, the same device was observed making numerous internal connections consistent with network scanning activity, as well as DCE-RPC requests.

Just a few minutes later, Darktrace again detected the use of a new administrative credential, observing the following details:

  • domain=REDACTED hostname=DESKTOP-1JIMIV3 auth_successful=T result=success ntlm_version=2 .

The hostname observed by Darktrace, “DESKTOP-1JIMIV3,” has also been identified by other external vendors and was associated with a remote computer name seen accessing compromised accounts [2].

Darktrace also observed the device performing an SMB write of an additional file, “to.bat,” which may have represented another malicious file loaded from the DLL files that the device had downloaded earlier. It is possible this represented the threat actor attempting to deploy a remote scheduled task.

Darktrace’s detection of SMB Write of the suspicious file “to.bat”.
Figure 7: Darktrace’s detection of SMB Write of the suspicious file “to.bat”.

Further investigation revealed that the device was likely a Veeam server, with its MAC address indicating it was a VMware device. It also appeared that the Veeam server was capturing activities referenced from the hostname DESKTOP-1JIMIV3. This may be analogous to the remote computer name reported by external researchers as accessing accounts [2]. However, this activity might also suggest that while the same threat actor and tools could be involved, they may be targeting a different vulnerability in this instance.

Autonomous Response

In this case, the customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device. This action allows a device to make its usual connections while blocking any that deviate from expected behavior. These mitigative actions by Darktrace ensured that the compromise was promptly halted, preventing any further damage to the customer’s environment.

Darktrace's Autonomous Response capability actively mitigating the suspicious internal connectivity.
Figure 8: Darktrace's Autonomous Response capability actively mitigating the suspicious internal connectivity.

Conclusion

If the previous blog in January 2024 was a stark reminder of the threat posed by malicious actors exploiting Internet-facing assets, the recent activities surrounding CVE-2025-0282 and CVE-2025-0283 emphasize this even further.

Based on the telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated .

These activities included the download of suspicious files such as “DeElevate64.exe” and “DeElevator64.dll” potentially used by attackers to sideload backdoors into infected systems. The suspicious hostname DESKTOP-1JIMIV3 was also observed and appears to be associated with a remote computer name seen accessing compromised accounts. These activities are far from exhaustive, and many more will undoubtedly be uncovered as threat actors evolve.

Fortunately, Darktrace was able to swiftly detect and respond to suspicious network activity linked to the latest Ivanti vulnerabilities, sometimes even before these vulnerabilities were publicly disclosed.

Credit to: Nahisha Nobregas, Senior Cyber Analyst, Emma Foulger, Principle Cyber Analyst, Ryan Trail, Analyst Content Lead and the Darktrace Threat Research Team

Appendices

Darktrace Model Detections

Case 1

·      Anomalous Connection / Unusual Admin SMB Session

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Internal / Unusual SMB Script Write

·      Anomalous File / Multiple EXE from Rare External Locations

·      Anomalous File / Script from Rare External Location

·      Compliance / SMB Drive Write

·      Device / Multiple Lateral Movement Model Alerts

·      Device / Network Range Scan

·      Device / Network Scan

·      Device / New or Uncommon WMI Activity

·      Device / RDP Scan

·      Device / Suspicious Network Scan Activity

·      Device / Suspicious SMB Scanning Activity

·      User / New Admin Credentials on Client

·      User / New Admin Credentials on Server 

Case 2

·      Anomalous Connection / Unusual Admin SMB Session

·      Anomalous Connection / Unusual Admin RDP Session

·      Compliance / SMB Drive Write

·      Device / Multiple Lateral Movement Model Alerts

·      Device / SMB Lateral Movement

·      Device / Possible SMB/NTLM Brute Force

·      Device / Suspicious SMB Scanning Activity

·      Device / Network Scan

·      Device / RDP Scan

·      Device / Large Number of Model Alerts

·      Device / Anomalous ITaskScheduler Activity

·      Device / Suspicious Network Scan Activity

·      Device / New or Uncommon WMI Activity

List of IoCs Possible IoCs:

·      DeElevator64.dll

·      deelevator64.dll

·      DeElevate64.exe

·      deelevator64.dll

·      deelevate64.exe

·      to.bat

Mid-high confidence IoCs:

-       104.238.130[.]185

-       http://104.238.130[.]185/DeElevate64.exe

-       http://104.238.130[.]185/DeElevator64.dll

-       DESKTOP-1JIMIV3

References:

1.     https://www.ivanti.com/blog/security-update-ivanti-connect-secure-policy-secure-and-neurons-for-zta-gateways

2.     https://unit42.paloaltonetworks.com/threat-brief-ivanti-cve-2025-0282-cve-2025-0283/

3.     https://www.proofpoint.com/uk/blog/identity-threat-defense/privilege-escalation-attack#:~:text=In%20this%20approach%2C%20attackers%20exploit,handing%20over%20their%20login%20credentials

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Hugh Turnbull
Cyber Analyst

More in this series

No items found.

Blog

/

Cloud

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI