Blog
/
/
August 4, 2020

How to Prevent Spear Phishing Attacks Post Twitter Hack

Twitter confirmed spear phishing as the cause of last month's attack. Learn about the limits of current defenses against spear phishing and how AI can stop it.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Aug 2020

Twitter has now confirmed that it was a “phone spear phishing attack” targeting a small number of their employees that allowed hackers to access 130 high-profile user accounts and fool thousands of people into giving away money via bitcoin.

Spear phishing involves targeted texts or emails aimed at individuals in an attempt to ‘hook’ them into opening an attachment or malicious link. This attack highlights the limitations in the security controls adopted by even some of the largest and most tech-savvy organizations out there, who continue to fall victim to this well-known attack technique.

The incident has been described by Twitter as a “coordinated social engineering attack” that “successfully targeted employees with access to internal systems and tools.”

Though the specific nature of the attack remains unclear, it likely followed a similar pattern to the series of threat finds detailed elsewhere on the Darktrace Blog: impersonating trusted colleagues or platforms, such as WeTransfer, Microsoft Teams or even Twitter itself, with an urgent message coaxing an employee into clicking on a disguised URL and inputting their credentials on a fake login page.

When an employee inputs their credentials, that data is recorded and beaconed back to the attacker, who will then use these login details to access internal systems — which, in this case, allowed them to subsequently take control of celebrities’ Twitter accounts and send out the damaging Tweets that left thousands out of pocket.

Training the workforce is not enough

Twitter says in a statement that this incident has forced them to “accelerate several of [their] pre-existing security workstreams.” But the suggestion that they will continue to organize “ongoing company-wide phishing exercises throughout the year” indicates an over-reliance on the ability of humans to identify these malicious email attacks that are getting more and more advanced, and harder to distinguish from genuine communication.

Cyber-criminals are now using AI to create fake profiles, personalize messages and replicate communication patterns, at a speed and scale that no human ever could. In this threat landscape, there can no longer be a reliance solely on educating the workforce, as the difference between a malicious email and legitimate communication becomes almost imperceptible. This has led to an acceptance that we must rely on technology to help us catch the subtle signs of attack, when humans alone fail to do so.

The legacy approach: no playbook for new attacks

The majority of communications security systems are not where they need to be, and this is particularly true for the email realm. Most tools in use today rely on static blacklists of rules and signatures that analyze emails in isolation, against known ‘bads’. Methods like looking for IP addresses or file hashes associated with phishing have had limited success in stopping attackers, who have devised simple techniques to bypass them.

As we have explored previously, attackers are constantly changing their approach, purchasing new domains en masse, experimenting with novel strains of malware, and manipulating headers to get around common validation checks. It is due to these developments that Secure Email Gateways (SEGs) become antiquated almost the moment they are updated.

The mean lifetime of an attack has reduced from 2.1 days in 2018 to 0.5 days in 2020. As soon as an SEG identifies a domain or a file hash as malicious, cyber-criminals change their attack infrastructure and launch a new wave of fresh attacks. Their fundamental means of operation renders legacy security tools incapable of evolving with the threat landscape, and it is for this reason that over 94% of cyber-attacks today start with an email.

How Cyber AI catches the threats others miss

However, one area where email security has seen great progress even in the last two years is the application of AI to spot the subtle features of advanced email attacks, even those that leverage novel malware. This approach allows security tools to move away from the binary decision-making that comes with asking “Is this email ‘bad’?” and moving to the far more useful question of “does this belong?”

This form of what we’re calling ‘layered AI’ combines supervised and unsupervised machine learning, enabling it to spot the subtle deviations from learned ‘patterns of life’ that are indicative of a cyber-threat.

Supervised machine learning models can be trained on millions of emails to find subtle patterns undetectable by humans and detect new variations of known threat types. These models are able to find the real-world intentions behind an email: by training on millions of spear phishing emails, for example, a system can find patterns associated with this type of email attack and accurately classify a future email as spear phishing.

In addition, unsupervised machine learning models can be trained on all available email data for an organization to find unknown variations of unknown threat types — that is, the ‘unknown unknowns,’ the combinations never before seen. Ultimately this is what enables a system to ask that critical question “does this belong?” and spot genuine anomalies that fall outside of the norm.

Layering both of these applications of AI allows us to make determinations such as: ‘this is a phishing email and it doesn’t belong’, dramatically improving the system’s accuracy and allowing it to interrupt only the malicious emails – since there could be phishy-looking emails that are legitimate! It also enables us to act in proportion to the threat identified: locking links and attachments in some cases, or holding back emails entirely in others.

This form of ‘layered AI’ requires an advanced understanding of mathematics and machine learning that takes years of research and development. With that experience, Cyber AI has proven itself capable of catching the full range of advanced attacks targeting the inbox, from spear phishing and impersonation attempts, to account takeovers and supply chain attacks. Once implemented, it takes only a week before any new organization can derive value, and thousands of customers now rely on Cyber AI to protect both their email realm and wider network.

Plenty more phish in the sea

This will not be the last time this year that a cyber-attack caused by spear phishing makes the headlines. Just this week, it was revealed that Russian-backed cyber-criminals stole sensitive documents on US-UK trade talks after successful spear phishing, and the technique may well have played a part in ongoing vaccine research espionage that surfaced in July.

With the US presidential race heating up, it was recently revealed that fewer than 3 out of 10 election administrators have basic controls to prevent phishing. This attack method may come to not only damage organizations and their reputation, but also to undermine the trust that serves as the bedrock of democracy. Now is the time to start recognizing the very real threat that email attackers represent, and to prepare our defenses accordingly.

Learn more about AI email security

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Network

/

May 28, 2025

PumaBot: Novel Botnet Targeting IoT Surveillance Devices

password login screen on computerDefault blog imageDefault blog image

Introduction: PumaBot attacking IoT devices

Darktrace researchers have identified a custom Go-based Linux botnet named “PumaBot” targeting embedded Linux Internet of Things (IoT) devices. Rather than scanning the Internet, the malware retrieves a list of targets from a command-and-control (C2) server and attempts to brute-force SSH credentials. Upon gaining access, it receives remote commands and establishes persistence using system service files. This blog post provides a breakdown of its key functionalities, and explores binaries related to the campaign.

Technical Analysis

Filename: jierui

md5: cab6f908f4dedcdaedcdd07fdc0a8e38

The Go-based botnet gains initial access through brute-forcing SSH credentials across a list of harvested IP addresses. Once it identifies a valid credential pair, it logs in, deploys itself, and begins its replication process.

Overview of Jierui functions
Figure 1: Overview of Jierui functions.

The domain associated with the C2 server did not resolve to an IP address at the time of analysis. The following details are a result of static analysis of the malware.

The malware begins by retrieving a list of IP addresses of likely devices with open SSH ports from the C2 server (ssh.ddos-cc[.]org) via the getIPs() function. It then performs brute-force login attempts on port 22 using credential pairs also obtained from the C2 through the readLinesFromURL(), brute(), and trySSHLogin() functions.

Within trySSHLogin(), the malware performs several environment fingerprinting checks. These are used to avoid honeypots and unsuitable execution environments, such as restricted shells. Notably, the malware checks for the presence of the string “Pumatronix”, a manufacturer of surveillance and traffic camera systems, suggesting potential IoT targeting or an effort to evade specific devices [1].

Fingerprinting of “Pumatronix”.
Figure 2: Fingerprinting of “Pumatronix”.

If the environment passes these checks, the malware executes uname -a to collect basic system information, including the OS name, kernel version, and architecture. This data, along with the victim's IP address, port, username, and password, is then reported back to the C2 in a JSON payload.

Of note, the bot uses X-API-KEY: jieruidashabi, within a custom header when it communicates with the C2 server over HTTP.

The malware writes itself to /lib/redis, attempting to disguise itself as a legitimate Redis system file. It then creates a persistent systemd service in /etc/systemd/system, named either redis.service or mysqI.service (note the spelling of mysql with a capital I) depending on what has been hardcoded into the malware. This allows the malware to persist across reboots while appearing benign.

[Unit]
Description=redis Server Service

[Service]
Type=simple
Restart=always
RestartSec=1
User=root
ExecStart=/lib/redis e

[Install]
WantedBy=multi-user.target

In addition to gaining persistence with a systemd service, the malware also adds its own SSH keys into the users’ authorized_keys file. This ensures that access can be maintained, even if the service is removed.

A function named cleankill() contains an infinite loop that repeatedly attempts to execute the commands “xmrig” and “networkxm”. These are launched without full paths, relying on the system's PATH variable suggesting that the binaries may be downloaded or unpacked elsewhere on the system. The use of “time.Sleep” between attempts indicates this loop is designed to ensure persistence and possibly restart mining components if they are killed or missing.

During analysis of the botnet, Darktrace discovered related binaries that appear to be part of a wider campaign targeting Linux systems.

Filename: ddaemon
Md5: 48ee40c40fa320d5d5f8fc0359aa96f3

Ddaemon is a Go-based backdoor. The malware begins by parsing command line arguments and if conditions are met, enters a loop where it periodically verifies the MD5 hash of the binary. If the check fails or an update is available, it downloads a new version from a C2 server (db.17kp[.]xyz/getDdaemonMd5), verifies it and replaces the existing binary with a file of the same name and similar functionality (8b37d3a479d1921580981f325f13780c).

The malware uses main_downloadNetwork() to retrieve the binary “networkxm” into /usr/src/bao/networkxm. Additionally, the bash script “installx.sh” is also retrieved from the C2 and executed. The binary ensures persistence by writing a custom systemd service unit that auto starts on boot and executes ddaemon.

Filename: networkxm
Md5: be83729e943d8d0a35665f55358bdf88

The networkxm binary functions as an SSH brute-force tool, similar to the botnet. First it checks its own integrity using MD5 hashes and contacts the C2 server (db.17kp[.]xyz) to compare its hash with the latest version. If an update is found, it downloads and replaces itself.

Part of networkxm checking MD5 hash.
Figure 3: Part of networkxm checking MD5 hash.
MD5 hash
Figure 4: MD5 hash

After verifying its validity, it enters an infinite loop where it fetches a password list from the C2 (/getPassword), then attempts SSH connections across a list of target IPs from the /getIP endpoint. As with the other observed binaries, a systemd service is created if it doesn’t already exist for persistence in /etc/systemd/system/networkxm.service.

Bash script installx.sh.
Figure 5: Bash script installx.sh.

Installx.sh is a simple bash script used to retrieve the script “jc.sh” from 1.lusyn[.]xyz, set permissions, execute and clear bash history.

Figure 6: Snippet of bash script jc.sh.

The script jc.sh starts by detecting the operating system type Debian-based or Red Hat-based and determines the location of the pam_unix.so file. Linux Pluggable Authentication Modules (PAM) is a framework that allows for flexible and centralized user authentication on Linux systems. PAM allows system administrators to configure how users are authenticated for services like login, SSH, or sudo by plugging in various authentication modules.

Jc.sh then attempts to fetch the current version of PAM installed on the system and formats that version to construct a URL. Using either curl or wget, the script downloads a replacement pam_unix.so file from a remote server and replaces the existing one, after disabling file immutability and backing up the original.

The script also downloads and executes an additional binary named “1” from the same remote server. Security settings are modified including enabling PAM in the SSH configuration and disabling SELinux enforcement, before restarting the SSH service. Finally, the script removes itself from the system.

Filename: Pam_unix.so_v131
md5: 1bd6bcd480463b6137179bc703f49545

Based on the PAM version that is retrieved from the bash query, the new malicious PAM replaces the existing PAM file. In this instance, pam_unix.so_v131 was retrieved from the server based on version 1.3.1. The purpose of this binary is to act as a rootkit that steals credentials by intercepting successful logins. Login data can include all accounts authenticated by PAM, local and remote (SSH). The malware retrieves the logged in user, the password and verifies that the password is valid. The details are stored in a file “con.txt” in /usr/bin/.

Function storing logins to con.txt
Figure 7: Function storing logins to con.txt

Filename: 1

md5: cb4011921894195bcffcdf4edce97135

In addition to the malicious PAM file, a binary named “1” is also retrieved from the server http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc/1. The binary “1” is used as a watcher for the malicious PAM file using inotify to monitor for “con.txt” being written or moved to /usr/bin/.

Following the daemonize() function, the binary is run daemonized ensuring it runs silently in the background. The function read_and_send_files() is called which reads the contents of “/usr/bin/con.txt”, queries the system IP with ifconfig.me, queries SSH ports and sends the data to the remote C2 (http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api/).

Command querying SSH ports.
Figure 8: Command querying SSH ports.

For persistence, a systemd service (my_daemon.service) is created to autostart the binary and ensure it restarts if the service has been terminated. Finally, con.txt is deleted, presumably to remove traces of the malware.

Conclusion

The botnet represents a persistent Go-based SSH threat that leverages automation, credential brute-forcing, and native Linux tools to gain and maintain control over compromised systems. By mimicking legitimate binaries (e.g., Redis), abusing systemd for persistence, and embedding fingerprinting logic to avoid detection in honeypots or restricted environments, it demonstrates an intent to evade defenses.

While it does not appear to propagate automatically like a traditional worm, it does maintain worm-like behavior by brute-forcing targets, suggesting a semi-automated botnet campaign focused on device compromise and long-term access.

Recommendations

  1. Monitor for anomalous SSH login activity, especially failed login attempts across a wide IP range, which may indicate brute-force attempts.
  2. Audit systemd services regularly. Look for suspicious entries in /etc/systemd/system/ (e.g., misspelled or duplicate services like mysqI.service) and binaries placed in non-standard locations such as /lib/redis.
  3. Inspect authorized_keys files across user accounts for unknown SSH keys that may enable unauthorized access.
  4. Filter or alert on outbound HTTP requests with non-standard headers, such as X-API-KEY: jieruidashabi, which may indicate botnet C2 communication.
  5. Apply strict firewall rules to limit SSH exposure rather than exposing port 22 to the internet.

Appendices

References

1.     https://pumatronix.com/

Indicators of Compromise (IoCs)

Hashes

cab6f908f4dedcdaedcdd07fdc0a8e38 - jierui

a9412371dc9247aa50ab3a9425b3e8ba - bao

0e455e06315b9184d2e64dd220491f7e - networkxm

cb4011921894195bcffcdf4edce97135 - 1
48ee40c40fa320d5d5f8fc0359aa96f3 - ddaemon
1bd6bcd480463b6137179bc703f49545 - pam_unix.so_v131

RSA Key

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0tH30Li6Gduh0Jq5A5dO5rkWTsQlFttoWzPFnGnuGmuF+fwIfYvQN1z+WymKQmX0ogZdy/CEkki3swrkq29K/xsyQQclNm8+xgI8BJdEgTVDHqcvDyJv5D97cU7Bg1OL5ZsGLBwPjTo9huPE8TAkxCwOGBvWIKUE3SLZW3ap4ciR9m4ueQc7EmijPHy5qds/Fls+XN8uZWuz1e7mzTs0Pv1x2CtjWMR/NF7lQhdi4ek4ZAzj9t/2aRvLuNFlH+BQx+1kw+xzf2q74oBlGEoWVZP55bBicQ8tbBKSN03CZ/QF+JU81Ifb9hy2irBxZOkyLN20oSmWaMJIpBIsh4Pe9 @root

Network

http://ssh[.]ddos-cc.org:55554

http://ssh[.]ddos-cc.org:55554/log_success

http://ssh[.]ddos-cc.org:55554/get_cmd

http://ssh[.]ddos-cc.org:55554/pwd.txt

https://dow[.]17kp.xyz/

https://input[.]17kp.xyz/

https://db[.]17kp[.]xyz/

http://1[.]lusyn[.]xyz

http://1[.]lusyn[.]xyz/jc/1

http://1[.]lusyn[.]xyz/jc/jc.sh

http://1[.]lusyn[.]xyz/jc/aa

http://1[.]lusyn[.]xyz/jc/cs

http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api

http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc

Detection Rule

rule Linux_PumaBot

{

  meta:

      description = "Rule to match on PumaBot samples"

      author = "tgould@cadosecurity.com"

  strings:

      $xapikey = "X-API-KEY" ascii

      $get_ips = "?count=5000" ascii

      $exec_start = "ExecStart=/lib/redis" ascii

      $svc_name1 = "redis.service" ascii

      $svc_name2 = "mysqI.service" ascii

      $uname = "uname -a" ascii

      $pumatronix = "Pumatronix" ascii

  condition:

      uint32(0) == 0x464c457f and

      all of (

          $xapikey,

          $uname,

          $get_ips,

          $exec_start

      ) and any of (

          $svc_name1,

          $svc_name2

      ) and $pumatronix

}

Continue reading
About the author
Tara Gould
Threat Researcher

Blog

/

Identity

/

May 27, 2025

From Rockstar2FA to FlowerStorm: Investigating a Blooming Phishing-as-a-Service Platform

man on computerDefault blog imageDefault blog image

What is FlowerStorm?

FlowerStorm is a Phishing-as-a-Service (PhaaS) platform believed to have gained traction following the decline of the former PhaaS platform Rockstar2FA. It employs Adversary-in-the-Middle (AitM) attacks to target Microsoft 365 credentials. After Rockstar2FA appeared to go dormant, similar PhaaS portals began to emerge under the name FlowerStorm. This naming is likely linked to the plant-themed terminology found in the HTML titles of its phishing pages, such as 'Sprout' and 'Blossom'. Given the abrupt disappearance of Rockstar2FA and the near-immediate rise of FlowerStorm, it is possible that the operators rebranded to reduce exposure [1].

External researchers identified several similarities between Rockstar2FA and FlowerStorm, suggesting a shared operational overlap. Both use fake login pages, typically spoofing Microsoft, to steal credentials and multi-factor authentication (MFA) tokens, with backend infrastructure hosted on .ru and .com domains. Their phishing kits use very similar HTML structures, including randomized comments, Cloudflare turnstile elements, and fake security prompts. Despite Rockstar2FA typically being known for using automotive themes in their HTML titles, while FlowerStorm shifted to a more botanical theme, the overall design remained consistent [1].

Despite these stylistic differences, both platforms use similar credential capture methods and support MFA bypass. Their domain registration patterns and synchronized activity spikes through late 2024 suggest shared tooling or coordination [1].

FlowerStorm, like Rockstar2FA, also uses their phishing portal to mimic legitimate login pages such as Microsoft 365 for the purpose of stealing credentials and MFA tokens while the portals are relying heavily on backend servers using top-level domains (TLDs) such as .ru, .moscow, and .com. Starting in June 2024, some of the phishing pages began utilizing Cloudflare services with domains such as pages[.]dev. Additionally, usage of the file “next.php” is used to communicate with their backend servers for exfiltration and data communication. FlowerStorm’s platform focuses on credential harvesting using fields such as email, pass, and session tracking tokens in addition to supporting email validation and MFA authentications via their backend systems [1].

Darktrace’s coverage of FlowerStorm Microsoft phishing

While multiple suspected instances of the FlowerStorm PhaaS platform were identified during Darktrace’s investigation, this blog will focus on a specific case from March 2025. Darktrace’s Threat Research team analyzed the affected customer environment and discovered that threat actors were accessing a Software-as-a-Service (SaaS) account from several rare external IP addresses and ASNs.

Around a week before the first indicators of FlowerStorm were observed, Darktrace detected anomalous logins via Microsoft Office 365 products, including Office365 Shell WCSS-Client and Microsoft PowerApps.  Although not confirmed in this instance, Microsoft PowerApps could potentially be leveraged by attackers to create phishing applications or exploit vulnerabilities in data connections [2].

Darktrace’s detection of the unusual SaaS credential use.
Figure 1: Darktrace’s detection of the unusual SaaS credential use.

Following this initial login, Darktrace observed subsequent login activity from the rare source IP, 69.49.230[.]198. Multiple open-source intelligence (OSINT) sources have since associated this IP with the FlowerStorm PhaaS operation [3][4].  Darktrace then observed the SaaS user resetting the password on the Core Directory of the Azure Active Directory using the user agent, O365AdminPortal.

Given FlowerStorm’s known use of AitM attacks targeting Microsoft 365 credentials, it seems highly likely that this activity represents an attacker who previously harvested credentials and is now attempting to escalate their privileges within the target network.

Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.
Figure 2: Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.

Notably, Darktrace’s Cyber AI Analyst also detected anomalies during a number of these login attempts, which is significant given FlowerStorm’s known capability to bypass MFA and steal session tokens.

Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Figure 3: Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.
Figure 4: Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.

In response to the suspicious SaaS activity, Darktrace recommended several Autonomous Response actions to contain the threat. These included blocking the user from making further connections to the unusual IP address 69.49.230[.]198 and disabling the user account to prevent any additional malicious activity. In this instance, Darktrace’s Autonomous Response was configured in Human Confirmation mode, requiring manual approval from the customer’s security team before any mitigative actions could be applied. Had the system been configured for full autonomous response, it would have immediately blocked the suspicious connections and disabled any users deviating from their expected behavior—significantly reducing the window of opportunity for attackers.

Figure 5: Autonomous Response Actions recommended on this account behavior; This would result in disabling the user and blocking further sign-in activity from the source IP.

Conclusion

The FlowerStorm platform, along with its predecessor, RockStar2FA is a PhaaS platform known to leverage AitM attacks to steal user credentials and bypass MFA, with threat actors adopting increasingly sophisticated toolkits and techniques to carry out their attacks.

In this incident observed within a Darktrace customer's SaaS environment, Darktrace detected suspicious login activity involving abnormal VPN usage from a previously unseen IP address, which was subsequently linked to the FlowerStorm PhaaS platform. The subsequent activity, specifically a password reset, was deemed highly suspicious and likely indicative of an attacker having obtained SaaS credentials through a prior credential harvesting attack.

Darktrace’s prompt detection of these SaaS anomalies and timely notifications from its Security Operations Centre (SOC) enabled the customer to mitigate and remediate the threat before attackers could escalate privileges and advance the attack, effectively shutting it down in its early stages.

Credit to Justin Torres (Senior Cyber Analyst), Vivek Rajan (Cyber Analyst), Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Alert Detections

·      SaaS / Access / M365 High Risk Level Login

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login from Rare High-Risk Endpoint

·      SaaS / Compromise / SaaS Anomaly Following Anomalous Login

·      SaaS / Compromise / Unusual Login and Account Update

·      SaaS / Unusual Activity / Unusual MFA Auth and SaaS Activity

Cyber AI Analyst Coverage

·      Suspicious Access of Azure Active Directory  

·      Suspicious Access of Azure Active Directory  

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

69.49.230[.]198 – Source IP – Malicious IP Associated with FlowerStorm, Observed in Login Activity

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

References:

[1] https://news.sophos.com/en-us/2024/12/19/phishing-platform-rockstar-2fa-trips-and-flowerstorm-picks-up-the-pieces/

[2] https://learn.microsoft.com/en-us/security/operations/incident-response-playbook-compromised-malicious-app

[3] https://www.virustotal.com/gui/ip-address/69.49.230.198/community

[4] https://otx.alienvault.com/indicator/ip/69.49.230.198

Continue reading
About the author
Justin Torres
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI