Blog
What the Twitter hack reveals about spear phishing – and how to prevent it



Twitter has now confirmed that it was a “phone spear phishing attack” targeting a small number of their employees that allowed hackers to access 130 high-profile user accounts and fool thousands of people into giving away money via bitcoin.
Spear phishing involves targeted texts or emails aimed at individuals in an attempt to ‘hook’ them into opening an attachment or malicious link. This attack highlights the limitations in the security controls adopted by even some of the largest and most tech-savvy organizations out there, who continue to fall victim to this well-known attack technique.
The incident has been described by Twitter as a “coordinated social engineering attack” that “successfully targeted employees with access to internal systems and tools.”
Though the specific nature of the attack remains unclear, it likely followed a similar pattern to the series of threat finds detailed elsewhere on the Darktrace Blog: impersonating trusted colleagues or platforms, such as WeTransfer, Microsoft Teams or even Twitter itself, with an urgent message coaxing an employee into clicking on a disguised URL and inputting their credentials on a fake login page.
When an employee inputs their credentials, that data is recorded and beaconed back to the attacker, who will then use these login details to access internal systems — which, in this case, allowed them to subsequently take control of celebrities’ Twitter accounts and send out the damaging Tweets that left thousands out of pocket.
Training the workforce is not enough
Twitter says in a statement that this incident has forced them to “accelerate several of [their] pre-existing security workstreams.” But the suggestion that they will continue to organize “ongoing company-wide phishing exercises throughout the year” indicates an over-reliance on the ability of humans to identify these malicious email attacks that are getting more and more advanced, and harder to distinguish from genuine communication.
Cyber-criminals are now using AI to create fake profiles, personalize messages and replicate communication patterns, at a speed and scale that no human ever could. In this threat landscape, there can no longer be a reliance solely on educating the workforce, as the difference between a malicious email and legitimate communication becomes almost imperceptible. This has led to an acceptance that we must rely on technology to help us catch the subtle signs of attack, when humans alone fail to do so.
The legacy approach: no playbook for new attacks
The majority of communications security systems are not where they need to be, and this is particularly true for the email realm. Most tools in use today rely on static blacklists of rules and signatures that analyze emails in isolation, against known ‘bads’. Methods like looking for IP addresses or file hashes associated with phishing have had limited success in stopping attackers, who have devised simple techniques to bypass them.
As we have explored previously, attackers are constantly changing their approach, purchasing new domains en masse, experimenting with novel strains of malware, and manipulating headers to get around common validation checks. It is due to these developments that Secure Email Gateways (SEGs) become antiquated almost the moment they are updated.
The mean lifetime of an attack has reduced from 2.1 days in 2018 to 0.5 days in 2020. As soon as an SEG identifies a domain or a file hash as malicious, cyber-criminals change their attack infrastructure and launch a new wave of fresh attacks. Their fundamental means of operation renders legacy security tools incapable of evolving with the threat landscape, and it is for this reason that over 94% of cyber-attacks today start with an email.
How Cyber AI catches the threats others miss
However, one area where email security has seen great progress even in the last two years is the application of AI to spot the subtle features of advanced email attacks, even those that leverage novel malware. This approach allows security tools to move away from the binary decision-making that comes with asking “Is this email ‘bad’?” and moving to the far more useful question of “does this belong?”
This form of what we’re calling ‘layered AI’ combines supervised and unsupervised machine learning, enabling it to spot the subtle deviations from learned ‘patterns of life’ that are indicative of a cyber-threat.
Supervised machine learning models can be trained on millions of emails to find subtle patterns undetectable by humans and detect new variations of known threat types. These models are able to find the real-world intentions behind an email: by training on millions of spear phishing emails, for example, a system can find patterns associated with this type of email attack and accurately classify a future email as spear phishing.
In addition, unsupervised machine learning models can be trained on all available email data for an organization to find unknown variations of unknown threat types — that is, the ‘unknown unknowns,’ the combinations never before seen. Ultimately this is what enables a system to ask that critical question “does this belong?” and spot genuine anomalies that fall outside of the norm.
Layering both of these applications of AI allows us to make determinations such as: ‘this is a phishing email and it doesn’t belong’, dramatically improving the system’s accuracy and allowing it to interrupt only the malicious emails – since there could be phishy-looking emails that are legitimate! It also enables us to act in proportion to the threat identified: locking links and attachments in some cases, or holding back emails entirely in others.
This form of ‘layered AI’ requires an advanced understanding of mathematics and machine learning that takes years of research and development. With that experience, Cyber AI has proven itself capable of catching the full range of advanced attacks targeting the inbox, from spear phishing and impersonation attempts, to account takeovers and supply chain attacks. Once implemented, it takes only a week before any new organization can derive value, and thousands of customers now rely on Cyber AI to protect both their email realm and wider network.
Plenty more phish in the sea
This will not be the last time this year that a cyber-attack caused by spear phishing makes the headlines. Just this week, it was revealed that Russian-backed cyber-criminals stole sensitive documents on US-UK trade talks after successful spear phishing, and the technique may well have played a part in ongoing vaccine research espionage that surfaced in July.
With the US presidential race heating up, it was recently revealed that fewer than 3 out of 10 election administrators have basic controls to prevent phishing. This attack method may come to not only damage organizations and their reputation, but also to undermine the trust that serves as the bedrock of democracy. Now is the time to start recognizing the very real threat that email attackers represent, and to prepare our defenses accordingly.
Learn more about AI email security
Like this and want more?
Blog
Inside the SOC
How Abuse of ‘PerfectData Software’ May Create a Perfect Storm: An Emerging Trend in Account Takeovers


Amidst the ever-changing threat landscape, new tactics, techniques, and procedures (TTPs) seem to emerge daily, creating extreme challenges for security teams. The broad range of attack methods utilized by attackers seems to present an insurmountable problem: how do you defend against a playbook that does not yet exist?
Faced with the growing number of novel and uncommon attack methods, it is essential for organizations to adopt a security solution able to detect threats based on their anomalies, rather than relying on threat intelligence alone.
In March 2023, Darktrace observed an emerging trend in the use of an application known as ‘PerfectData Software’ for probable malicious purposes in several Microsoft 365 account takeovers.
Using its anomaly-based detection, Darktrace DETECT™ was able to identify the activity chain surrounding the use of this application, potentially uncovering a novel piece of threat actor tradecraft in the process.
Microsoft 365 Intrusions
In recent years, Microsoft’s Software-as-a-Service (SaaS) suite, Microsoft 365, along with its built-in identity and access management (IAM) service, Azure Active Directory (Azure AD), have been heavily targeted by threat actors due to their near-ubiquitous usage across industries. Four out of every five Fortune 500 companies, for example, use Microsoft 365 services [1].
Malicious actors typically gain entry to organizations’ Microsoft 365 environments by abusing either stolen account credentials or stolen session cookies [2]. Once inside, actors can access sensitive data within mailboxes or SharePoint repositories, and send out emails or Teams messages. This activity can often result in serious financial harm, especially in cases where the malicious actor’s end-goal is to elicit fraudulent transactions.
Darktrace regularly observes malicious actors behaving in predictable ways once they gain access to customer Microsoft 365 environment. One typical example is the creation of new inbox rules and sending deceitful emails intended to convince recipients to carry out subsequent actions, such as following a malicious link or providing sensitive information. It is also common for actors to register new applications in Azure AD so that they can be used to conduct follow-up activities, like mass-mailing or data theft. The registration of applications in Azure AD therefore seems to be a relatively predictable threat actor behavior [3][4]. Darktrace DETECT understands that unusual application registrations in Azure AD may constitute a deviation in expected behavior, and therefore a possible indicator of account compromise.
These registrations of applications in Azure AD are evidenced by creations of, as well as assignments of permissions to, Service Principals in Azure AD. Darktrace has detected a growing trend in actors creating and assigning permissions to a Service Principal named ‘PerfectData Software’. Further investigation of this Azure AD activity revealed it to be part of an ongoing account takeover.
‘PerfectData Software’ Activity
Darktrace observed variations of the following pattern of activity relating to an application named ‘PerfectData Software’ within its customer base:
- Actor signs in to a Microsoft 365 account from an endpoint associated with a Virtual Private Server (VPS) or Virtual Private Network (VPN) service
- Actor registers an application called 'PerfectData Software' with Azure AD, and then grants permissions to the application
- Actor accesses mailbox data and creates inbox rule
In two separate incidents, malicious actors were observed conducting their activities from endpoints associated with VPN services (HideMyAss (HMA) VPN and Surfshark VPN, respectively) and from endpoints within the Autonomous System AS396073 MAJESTIC-HOSTING-01.
In March 2023, Darktrace observed a malicious actor signing in to a Microsoft 365 account from a Kuwait-based IP address within the Autonomous System, AS198605 AVAST Software s.r.o. This IP address is associated with the VPN service, HMA VPN. Over the next couple of days, an actor (likely the same malicious actor) signed in to the account several more times from two different Nigeria-based endpoints, as well as a VPS-related endpoint and a HMA VPN endpoint.
During their login sessions, the actor performed a variety of actions. First, they created and assigned permissions to a Service Principal named ‘PerfectData Software’. This Service Principal creation represents the registration of an application called ‘PerfectData Software’ in Azure AD. Although the reason for registering this application is unclear, within a few days the actor registered and granted permission to another application, ‘Newsletter Software Supermailer’, and created a new inbox rule names ‘s’ on the mailbox of the hijacked account. This inbox rule moved emails meeting certain conditions to a folder named ‘RSS Subscription. The ‘Newsletter Software Supermailer’ application was likely registered by the actor to facilitate mass-mailing activity.
Immediately after these actions, Darktrace detected the actor sending out thousands of malicious emails from the account. The emails included an attachment named ‘Credit Transfer Copy.html’, which contained a suspicious link. Further investigation revealed that the customer’s network had received several fake invoice emails prior to this initial intrusion activity. Additionally, there was an unusually high volume of failed logins to the compromised account around the time of the initial access.

In a separate case also observed by Darktrace in March 2023, a malicious actor was observed signing in to a Microsoft 365 account from an endpoint within the Autonomous System, AS397086 LAYER-HOST-HOUSTON. The endpoint appears to be related to the VPN service, Surfshark VPN. This login was followed by several failed and successful logins from a VPS-related within the Autonomous System, AS396073 MAJESTIC-HOSTING-01. The actor was then seen registering and assigning permissions to an application called ‘PerfectData Software’. As with the previous example, the motives for this registration are unclear. The actor proceeded to log in several more times from a Surfshark VPN endpoint, however, they were not observed carrying out any further suspicious activity.

It was not clear in either of these examples, nor in fact any of cases observed by Darktrace, why actors had registered and assigned permissions to an application called ‘PerfectData Software’, and there do not appear to be any open-source intelligence (OSINT) resources or online literature related to the malicious usage of an application by that name. That said, there are several websites which appear to provide email migration and data recovery/backup tools under the moniker ‘PerfectData Software’.
It is unclear whether the use of ‘PerfectData Software’ by malicious actors observed on the networks of Darktrace customers was one of these tools. However, given the nature of the tools, it is possible that the actors intended to use them to facilitate the exfiltration of email data from compromises mailboxes.
If the legitimate software ‘PerfectData’ is the application in question in these incidents, it is likely being purchased and misused by attackers for malicious purposes. It is also possible the application referenced in the incidents is a spoof of the legitimate ‘PerfectData’ software designed to masquerade a malicious application as legitimate.
Darktrace Coverage
Cases of ‘PerfectData Software’ activity chains detected by Darktrace typically began with an actor signing into an internal user’s Microsoft 365 account from a VPN or VPS-related endpoint. These login events, along with the suspicious email and/or brute-force activity which preceded them, caused the following DETECT models to breach:
- SaaS / Access / Unusual External Source for SaaS Credential Use
- SaaS / Access / Suspicious Login Attempt
- SaaS / Compromise / Login From Rare Following Suspicious Login Attempt(s)
- SaaS / Email Nexus / Unusual Location for SaaS and Email Activity
Subsequent activities, including inbox rule creations, registration of applications in Azure AD, and mass-mailing activity, resulted in breaches of the following DETECT models.
- SaaS / Admin / OAuth Permission Grant
- SaaS / Compromise / Unusual Logic Following OAuth Grant
- SaaS / Admin / New Application Service Principal
- IaaS / Admin / Azure Application Administration Activities
- SaaS / Compliance / New Email Rule
- SaaS / Compromise / Unusual Login and New Email Rule
- SaaS / Email Nexus / Suspicious Internal Exchange Activity
- SaaS / Email Nexus / Possible Outbound Email Spam
- SaaS / Compromise / Unusual Login and Outbound Email Spam
- SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)

In cases where Darktrace RESPOND™ was enabled in autonomous response mode, ‘PerfectData Software’ activity chains resulted in breaches of the following RESPOND models:
• Antigena / SaaS / Antigena Suspicious SaaS Activity Block
• Antigena / SaaS / Antigena Significant Compliance Activity Block
In response to these model breaches, Darktrace RESPOND took immediate action, performing aggressive, inhibitive actions, such as forcing the actor to log out of the SaaS platform, and disabling the user entirely. When applied autonomously, these RESPOND actions would seriously impede an attacker’s progress and minimize network disruption.

In addition, Darktrace Cyber AI Analyst was able to autonomously investigate registrations of the ‘PerfectData Software’ application and summarized its findings into digestible reports.

Conclusion
Due to the widespread adoption of Microsoft 365 services in the workplace and continued emphasis on a remote workforce, account hijackings now pose a more serious threat to organizations around the world than ever before. The cases discussed here illustrate the tendency of malicious actors to conduct their activities from endpoints associated with VPN services, while also registering new applications, like PerfectData Software, with malicious intent.
While it was unclear exactly why the malicious actors were using ‘PerfectData Software’ as part of their account hijacking, it is clear that either the legitimate or spoofed version of the application is becoming an very likely emergent piece of threat actor tradecraft.
Darktrace DETECT’s anomaly-based approach to threat detection allowed it to recognize that the use of ‘PerfectData Software’ represented a deviation in the SaaS user’s expected behavior. While Darktrace RESPOND, when enabled in autonomous response mode, was able to quickly take preventative action against threat actors, blocking the potential use of the application for data exfiltration or other nefarious purposes.
Appendices
MITRE ATT&CK Mapping
Reconnaissance:
• T1598 – Phishing for Information
Credential Access:
• T1110 – Brute Force
Initial Access:
• T1078.004 – Valid Accounts: Cloud Accounts
Command and Control:
• T1105 – Ingress Tool Transfer
Persistence:
• T1098.003 – Account Manipulation: Additional Cloud Roles
Collection:
• T1114 – Email Collection
Defense Evasion:
• T1564.008 – Hide Artifacts: Email Hiding Rules
Lateral Movement:
• T1534 – Internal Spearphishing
Unusual Source IPs
• 5.62.60[.]202 (AS198605 AVAST Software s.r.o.)
• 160.152.10[.]215 (AS37637 Smile-Nigeria-AS)
• 197.244.250[.]155 (AS37705 TOPNET)
• 169.159.92[.]36 (AS37122 SMILE)
• 45.62.170[.]237 (AS396073 MAJESTIC-HOSTING-01)
• 92.38.180[.]49 (AS202422 G-Core Labs S.A)
• 129.56.36[.]26 (AS327952 AS-NATCOM)
• 92.38.180[.]47 (AS202422 G-Core Labs S.A.)
• 107.179.20[.]214 (AS397086 LAYER-HOST-HOUSTON)
• 45.62.170[.]31 (AS396073 MAJESTIC-HOSTING-01)
References
[1] https://www.investing.com/academy/statistics/microsoft-facts/
[2] https://intel471.com/blog/countering-the-problem-of-credential-theft
[3] https://darktrace.com/blog/business-email-compromise-to-mass-phishing-campaign-attack-analysis
[4] https://darktrace.com/blog/breakdown-of-a-multi-account-compromise-within-office-365
Blog
Cloud
Darktrace Integrates Self-Learning AI with Amazon Security Lake to Support Security Investigations
.jpg)


Darktrace has deepened its relationship with AWS by integrating its detection and response capabilities with Amazon Security Lake.
This development will allow mutual customers to seamlessly combine Darktrace AI’s bespoke understanding of their organization with the Threat Intelligence offered by other security tools, and investigate all of their alerts in one central location.
This integration will improve the value security teams get from both products, streamlining analyst workflows and improving their ability to detect and respond to the full spectrum of known and unknown cyber-threats.
How Darktrace and Amazon Security Lake augment security teams
Amazon Security Lake is a newly-released service that automatically centralizes an organization’s security data from cloud, on-premises, and custom sources into a customer owned purpose-built data lake. Both Darktrace and Amazon Security Lake support the Open Cybersecurity Schema Framework (OCSF), an open standard to simplify, combine, and analyze security logs.
Customers can store security logs, events, alerts, and other relevant data generated by various AWS services and security tools. By consolidating security data in a central lake, organizations can gain a holistic view of their security posture, perform advanced analytics, detect anomalies and open investigations to improve their security practices.
With Darktrace DETECT and RESPOND AI engines covering all assets across IT, OT, network, endpoint, IoT, email and cloud, organizations can augment the value of their security data lakes by feeding Darktrace’s rich and context-aware datapoints to Amazon Security Lake.
Amazon Security Lake empowers security teams to improve the protection of your digital estate:
- Quick and painless data normalization
- Fast-tracks ability to investigate, triage and respond to security events
- Broader visibility aids more effective decision-making
- Surfaces and prioritizes anomalies for further investigation
- Single interface for seamless data management
How will Darktrace customers benefit?
Across the Cyber AI Loop, all Darktrace solutions have been architected with AWS best practices in mind. With this integration, Darktrace is bringing together its understanding of ‘self’ for every organization with the centralized data visibility of the Amazon Security Lake. Darktrace’s unique approach to cyber security, powered by groundbreaking AI research, delivers a superior dataset based on a deep and interconnected understanding of the enterprise.
Where other cyber security solutions are trained to identify threats based on historical attack data and techniques, Darktrace DETECT gains a bespoke understanding of every digital environment, continuously analyzing users, assets, devices and the complex relationships between them. Our AI analyzes thousands of metrics to reveal subtle deviations that may signal an evolving issue – even unknown techniques and novel malware. It distinguishes between malicious and benign behavior, identifying harmful activity that typically goes unnoticed. This rich dataset is fed into RESPOND, which takes precise action to neutralize threats against any and every asset, no matter where data resides.
Both DETECT and RESPOND are supported by Darktrace Self-Learning AI, which provides full, real-time visibility into an organization’s systems and data. This always-on threat analysis already makes humans better at cyber security, improving decisions and outcomes based on total visibility of the digital ecosystem, supporting human performance with AI coverage and empowering security teams to proactively protect critical assets.
Converting Darktrace alerts to the Amazon Security Lake Open Cybersecurity Schema Framework (OCSF) supplies the Security Operations Center (SOC) and incident response team with contextualized data, empowering them to accelerate their investigation, triage and response to potential cyber threats.
Darktrace is available for purchase on the AWS Marketplace.
Learn more about how Darktrace provides full-coverage, AI-powered cloud security for AWS, or see how our customers use Darktrace in their AWS cloud environments.
