How to Prevent Spear Phishing Attacks Post Twitter Hack
04
Aug 2020
Twitter confirmed spear phishing as the cause of last month's attack. Learn about the limits of current defenses against spear phishing and how AI can stop it.
Twitter has now confirmed that it was a “phone spear phishing attack” targeting a small number of their employees that allowed hackers to access 130 high-profile user accounts and fool thousands of people into giving away money via bitcoin.
Spear phishing involves targeted texts or emails aimed at individuals in an attempt to ‘hook’ them into opening an attachment or malicious link. This attack highlights the limitations in the security controls adopted by even some of the largest and most tech-savvy organizations out there, who continue to fall victim to this well-known attack technique.
The incident has been described by Twitter as a “coordinated social engineering attack” that “successfully targeted employees with access to internal systems and tools.”
Though the specific nature of the attack remains unclear, it likely followed a similar pattern to the series of threat finds detailed elsewhere on the Darktrace Blog: impersonating trusted colleagues or platforms, such as WeTransfer, Microsoft Teams or even Twitter itself, with an urgent message coaxing an employee into clicking on a disguised URL and inputting their credentials on a fake login page.
When an employee inputs their credentials, that data is recorded and beaconed back to the attacker, who will then use these login details to access internal systems — which, in this case, allowed them to subsequently take control of celebrities’ Twitter accounts and send out the damaging Tweets that left thousands out of pocket.
Training the workforce is not enough
Twitter says in a statement that this incident has forced them to “accelerate several of [their] pre-existing security workstreams.” But the suggestion that they will continue to organize “ongoing company-wide phishing exercises throughout the year” indicates an over-reliance on the ability of humans to identify these malicious email attacks that are getting more and more advanced, and harder to distinguish from genuine communication.
Cyber-criminals are now using AI to create fake profiles, personalize messages and replicate communication patterns, at a speed and scale that no human ever could. In this threat landscape, there can no longer be a reliance solely on educating the workforce, as the difference between a malicious email and legitimate communication becomes almost imperceptible. This has led to an acceptance that we must rely on technology to help us catch the subtle signs of attack, when humans alone fail to do so.
The legacy approach: no playbook for new attacks
The majority of communications security systems are not where they need to be, and this is particularly true for the email realm. Most tools in use today rely on static blacklists of rules and signatures that analyze emails in isolation, against known ‘bads’. Methods like looking for IP addresses or file hashes associated with phishing have had limited success in stopping attackers, who have devised simple techniques to bypass them.
The mean lifetime of an attack has reduced from 2.1 days in 2018 to 0.5 days in 2020. As soon as an SEG identifies a domain or a file hash as malicious, cyber-criminals change their attack infrastructure and launch a new wave of fresh attacks. Their fundamental means of operation renders legacy security tools incapable of evolving with the threat landscape, and it is for this reason that over 94% of cyber-attacks today start with an email.
How Cyber AI catches the threats others miss
However, one area where email security has seen great progress even in the last two years is the application of AI to spot the subtle features of advanced email attacks, even those that leverage novel malware. This approach allows security tools to move away from the binary decision-making that comes with asking “Is this email ‘bad’?” and moving to the far more useful question of “does this belong?”
This form of what we’re calling ‘layered AI’ combines supervised and unsupervised machine learning, enabling it to spot the subtle deviations from learned ‘patterns of life’ that are indicative of a cyber-threat.
Supervised machine learning models can be trained on millions of emails to find subtle patterns undetectable by humans and detect new variations of known threat types. These models are able to find the real-world intentions behind an email: by training on millions of spear phishing emails, for example, a system can find patterns associated with this type of email attack and accurately classify a future email as spear phishing.
In addition, unsupervised machine learning models can be trained on all available email data for an organization to find unknown variations of unknown threat types — that is, the ‘unknown unknowns,’ the combinations never before seen. Ultimately this is what enables a system to ask that critical question “does this belong?” and spot genuine anomalies that fall outside of the norm.
Layering both of these applications of AI allows us to make determinations such as: ‘this is a phishing email and it doesn’t belong’, dramatically improving the system’s accuracy and allowing it to interrupt only the malicious emails – since there could be phishy-looking emails that are legitimate! It also enables us to act in proportion to the threat identified: locking links and attachments in some cases, or holding back emails entirely in others.
This form of ‘layered AI’ requires an advanced understanding of mathematics and machine learning that takes years of research and development. With that experience, Cyber AI has proven itself capable of catching the full range of advanced attacks targeting the inbox, from spear phishing and impersonation attempts, to account takeovers and supply chain attacks. Once implemented, it takes only a week before any new organization can derive value, and thousands of customers now rely on Cyber AI to protect both their email realm and wider network.
Plenty more phish in the sea
This will not be the last time this year that a cyber-attack caused by spear phishing makes the headlines. Just this week, it was revealed that Russian-backed cyber-criminals stole sensitive documents on US-UK trade talks after successful spear phishing, and the technique may well have played a part in ongoing vaccine research espionage that surfaced in July.
With the US presidential race heating up, it was recently revealed that fewer than 3 out of 10 election administrators have basic controls to prevent phishing. This attack method may come to not only damage organizations and their reputation, but also to undermine the trust that serves as the bedrock of democracy. Now is the time to start recognizing the very real threat that email attackers represent, and to prepare our defenses accordingly.
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Dan Fein
VP, Product
Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.
NIS2 Compliance: Interpreting 'State-of-the-Art' for Organisations
NIS2 Background
17 October 2024 marked the deadline for European Union (EU) Member States to implement the NIS2 Directive into national law. The Directive aims to enhance the EU’s cybersecurity posture by establishing a high common level of cybersecurity for critical infrastructure and services. It builds on its predecessor, the 2018 NIS Directive, by expanding the number of sectors in scope, enforcing greater reporting requirements and encouraging Member States to ensure regulated organisations adopt ‘state-of-the-art' security measures to protect their networks, OT and IT systems.
Figure 1: Timeline of NIS2
The challenge of NIS2 & 'state-of-the-art'
Preamble (51) - "Member States should encourage the use of any innovative technology, including artificial intelligence, the use of which could improve the detection and prevention of cyberattacks, enabling resources to be diverted towards cyberattacks more effectively."
Article 21 - calls on Member States to ensure that essential and important entities “take appropriate and proportionate” cyber security measures, and that they do so by “taking into account the state-of-the-art and, where applicable, relevant European and international standards, as well as the cost of implementation.”
Regulartory expectations and ambiguity of NIS2
While organisations in scope can rely on technical guidance provided by ENISA1 , the EU’s agency for cybersecurity, or individual guidelines provided by Member States or Public-Private Partnerships where they have been published,2 the mention of ‘state-of-the-art' remains up to interpretation in most Member States. The use of the phrase implies that cybersecurity measures must evolve continuously to keep pace with emerging threats and technological advancements without specifying what ‘state-of-the-art’ actually means for a given context and risk.3
This ambiguity makes it difficult for organisations to determine what constitutes compliance at any given time and could lead to potential inconsistencies in implementation and enforcement. Moreover, the rapid pace of technological change means that what is considered "state-of-the-art" today will become outdated, further complicating compliance efforts.
However, this is not unique to NIS regulation. As EU scholars have noted, while “state-of-the-art" is widely referred to in legal text relating to technology, there is no standardised legal definition of what it actually constitutes.4
Defining state-of-the-art cybersecurity
In this blog, we outline technical considerations for state-of-the-art cybersecurity. We draw from expertise within our own business and in academia as well as guidelines and security standards set by national agencies, such as Germany’s Federal Office for Information Security (BSI) or Spain’s National Security Framework (ENS), to put forward five criteria to define state-of-the-art cybersecurity.
The five core criteria include:
Continuous monitoring
Incident correlation
Detection of anomalous activity
Autonomous response
Proactive cyber resilience
These principles build on long-standing security considerations, such as business continuity, vulnerability management and basic security hygiene practices.
Although these considerations are written in the context of the NIS2 Directive, they are likely to also be relevant for other jurisdictions. We hope these criteria help organisations understand how to best meet their responsibilities under the NIS2 Directive and assist Competent Authorities in defining compliance expectations for the organisations they regulate.
Ultimately, adopting state-of-the-art cyber defences is crucial for ensuring that organisations are equipped with the best tools to combat new and fast-growing threats. Leading technical authorities, such as the UK National Cyber Security Centre (NCSC), recognise that adoption of AI-powered cyber defences will offset the increased volume and impact of AI on cyber threats.5
State of the art cybersecurity in the context of NIS2
1. Continuous monitoring
Continuous monitoring is required to protect an increasingly complex attack surface from attackers.
First, organisations' attack surfaces have expanded following the widespread adoption of hybrid or cloud infrastructures and the increased adoption of connected Internet of Things (IoT) devices.6 This exponential growth creates a complex digital environment for organisations, making it difficult for security teams to track all internet-facing assets and identify potential vulnerabilities.
Second, with the significant increase in the speed and sophistication of cyber-attacks, organisations face a greater need to detect security threats and non-compliance issues in real-time.
Continuous monitoring, defined by the U.S. National Institute of Standards and Technology (NIST) as the ability to maintain “ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions,”7 has therefore become a cornerstone of an effective cybersecurity strategy. By implementing continuous monitoring, organisations can ensure a real-time understanding of their attack surface and that new external assets are promptly accounted for. For instance, Spain’s technical guidelines for regulation, as set forth by the National Security Framework (Royal Decree 311/2022), highlight the importance of adopting continuous monitoring to detect anomalous activities or behaviours and to ensure timely responses to potential threats (article 10).8
This can be achieved through the following means:
All assets that form part of an organisation's estate, both known and unknown, must be identified and continuously monitored for current and emerging risks. Germany’s BSI mandates the continuous monitoring of all protocol and logging data in real-time (requirement #110).9 This should be conducted alongside any regular scans to detect unknown devices or cases of shadow IT, or the use of unauthorised or unmanaged applications and devices within an organisation, which can expose internet-facing assets to unmonitored risks. Continuous monitoring can therefore help identify potential risks and high-impact vulnerabilities within an organisation's digital estate and eliminate potential gaps and blind spots.
Organisations looking to implement more efficient continuous monitoring strategies may turn to automation, but, as the BSI notes, it is important for responsible parties to be immediately warned if an alert is raised (reference 110).10 Following the BSI’s recommendations, the alert must be examined and, if necessary, contained within a short period of time corresponding with the analysis of the risk at hand.
Finally, risk scoring and vulnerability mapping are also essential parts of this process. Looking across the Atlantic, the US’ National Institute of Standards and Technology (NIST) defines continuous monitoring as “maintaining ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions”.11 Continuous monitoring helps identify potential risks and significant vulnerabilities within an organisation's digital assets, fostering a dynamic understanding of risk. By doing so, risk scoring and vulnerability mapping allows organisations to prioritise the risks associated with their most critically exposed assets.
2. Correlation of incidents across your entire environment
Viewing and correlating incident alerts when working with different platforms and tools poses significant challenges to SecOps teams. Security professionals often struggle to cross-reference alerts efficiently, which can lead to potential delays in identifying and responding to threats. The complexity of managing multiple sources of information can overwhelm teams, making it difficult to maintain a cohesive understanding of the security landscape.
This fragmentation underscores the need for a centralised approach that provides a "single pane of glass" view of all cybersecurity alerts. These systems streamline the process of monitoring and responding to incidents, enabling security teams to act more swiftly and effectively. By consolidating alerts into a unified interface, organisations can enhance their ability to detect and mitigate threats, ultimately improving their overall security posture.
To achieve consolidation, organisations should consider the role automation can play when reviewing and correlating incidents. This is reflected in Spain’s technical guidelines for national security regulations regarding the requirements for the “recording of activity” (reinforcement R5).12 Specifically, the guidelines state that:
"The system shall implement tools to analyses and review system activity and audit information, in search of possible or actual security compromises. An automatic system for collection of records, correlation of events and automatic response to them shall be available”.13
Similarly, the German guidelines stress that automated central analysis is essential not only for recording all protocol and logging data generated within the system environment but also to ensure that the data is correlated to ensure that security-relevant processes are visible (article 115).14
Correlating disparate incidents and alerts is especially important when considering the increased connectivity between IT and OT environments driven by business and functional requirements. Indeed, organisations that believe they have air-gapped systems are now becoming aware of points of IT/OT convergence within their systems. It is therefore crucial for organisations managing both IT and OT environments to be able to visualise and secure devices across all IT and OT protocols in real-time to identify potential spillovers.
By consolidating data into a centralised system, organisations can achieve a more resilient posture. This approach exposes and eliminates gaps between people, processes, and technology before they can be exploited by malicious actors. As seen in the German and Spanish guidelines, a unified view of security alerts not only enhances the efficacy of threat detection and response but also ensures comprehensive visibility and control over the organisation's cybersecurity posture.
3. Detection of anomalous activity
Recent research highlights the emergence of a "new normal" in cybersecurity, marked by an increase in zero-day vulnerabilities. Indeed, for the first time since sharing their annual list, the Five Eyes intelligence alliance reported that in 2023, the majority of the most routinely exploited vulnerabilities were initially exploited as zero-days.15
To effectively combat these advanced threats, policymakers, industry and academic stakeholders alike recognise the importance of anomaly-based techniques to detect both known and unknown attacks.
As AI-enabled threats become more prevalent,16 traditional cybersecurity methods that depend on lists of "known bads" are proving inadequate against rapidly evolving and sophisticated attacks. These legacy approaches are limited because they can only identify threats that have been previously encountered and cataloged. However, cybercriminals are constantly developing new, never-before-seen threats, such as signatureless ransomware or living off the land techniques, which can easily bypass these outdated defences.
The importance of anomaly detection in cybersecurity can be found in Spain’s technical guidelines, which states that “tools shall be available to automate the prevention and response process by detecting and identifying anomalies17” (reinforcement R4 prevention and automatic response to "incident management”).
Similarly, the UK NCSC’s Cyber Assessment Framework (CAF) highlights how anomaly-based detection systems are capable of detecting threats that “evade standard signature-based security solutions” (Principle C2 - Proactive Security Event Discovery18). The CAF’s C2 principle further outlines:
“The science of anomaly detection, which goes beyond using pre-defined or prescriptive pattern matching, is a challenging area. Capabilities like machine learning are increasingly being shown to have applicability and potential in the field of intrusion detection.”19
By leveraging machine learning and multi-layered AI techniques, organisations can move away from static rules and signatures, adopting a more behavioural approach to identifying and containing risks. This shift not only enhances the detection of emerging threats but also provides a more robust defence mechanism.
A key component of this strategy is behavioral zero trust, which focuses on identifying unauthorized and out-of-character attempts by users, devices, or systems. Implementing a robust procedure to verify each user and issuing the minimum required access rights based on their role and established patterns of activity is essential. Organisations should therefore be encouraged to follow a robust procedure to verify each user and issue the minimum required access rights based on their role and expected or established patterns of activity. By doing so, organisations can stay ahead of emerging threats and embrace a more dynamic and resilient cybersecurity strategy.
4. Autonomous response
The speed at which cyber-attacks occur means that defenders must be equipped with tools that match the sophistication and agility of those used by attackers. Autonomous response tools are thus essential for modern cyber defence, as they enable organisations to respond to both known and novel threats in real time.
These tools leverage a deep contextual and behavioral understanding of the organisation to take precise actions, effectively containing threats without disrupting business operations.
To avoid unnecessary business disruptions and maintain robust security, especially in more sensitive networks such as OT environments, it is crucial for organisations to determine the appropriate response depending on their environment. This can range from taking autonomous and native actions, such as isolating or blocking devices, or integrating their autonomous response tool with firewalls or other security tools to taking customized actions.
Autonomous response solutions should also use a contextual understanding of the business environment to make informed decisions, allowing them to contain threats swiftly and accurately. This means that even as cyber-attacks evolve and become more sophisticated, organisations can maintain continuous protection without compromising operational efficiency.
Indeed, research into the adoption of autonomous cyber defences points to the importance of implementing “organisation-specific" and “context-informed” approaches.20 To decide the appropriate level of autonomy for each network action, it is argued, it is essential to use evidence-based risk prioritisation that is customised to the specific operations, assets, and data of individual enterprises.21
By adopting autonomous response solutions, organisations can ensure their defences are as dynamic and effective as the threats they face, significantly enhancing their overall security posture.
5. Proactive cyber resilience
Adopting a proactive approach to cybersecurity is crucial for organisations aiming to safeguard their operations and reputation. By hardening their defences enough so attackers are unable to target them effectively, organisations can save significant time and money. This proactive stance helps reduce business disruption, reputational damage, and the need for lengthy, resource-intensive incident responses.
Proactive cybersecurity incorporates many of the strategies outlined above. This can be seen in a recent survey of information technology practitioners, which outlines four components of a proactive cybersecurity culture: (1) visibility of corporate assets, (2) leveraging intelligent and modern technology, (3) adopting consistent and comprehensive training methods and (4) implementing risk response procedures.22 To this, we may also add continuous monitoring which allows organisations to understand the most vulnerable and high-value paths across their architectures, allowing them to secure their critical assets more effectively.
Alongside these components, a proactive cyber strategy should be based on a combined business context and knowledge, ensuring that security measures are aligned with the organisation's specific needs and priorities.
This proactive approach to cyber resilience is reflected in Spain’s technical guidance (article 8.2): “Prevention measures, which may incorporate components geared towards deterrence or reduction of the exposure surface, should eliminate or reduce the likelihood of threats materializing.”23 It can also be found in the NCSC’s CAF, which outlines how organisations can achieve “proactive attack discovery” (see Principle C2).24 Likewise, Belgium’s NIS2 transposition guidelines mandate the use of preventive measures to ensure the continued availability of services in the event of exceptional network failures (article 30).25
Ultimately, a proactive approach to cybersecurity not only enhances protection but also lowers regulatory risk and supports the overall resilience and stability of the organisation.
Looking forward
The NIS2 Directive marked a significant regulatory milestone in strengthening cybersecurity across the EU.26 Given the impact of emerging technologies, such as AI, on cybersecurity, it is to see that Member States are encouraged to promote the adoption of ‘state-of-the-art' cybersecurity across regulated entities.
In this blog, we have sought to translate what state-of-the-art cybersecurity may look like for organisations looking to enhance their cybersecurity posture. To do so, we have built on existing cybersecurity guidance, research and our own experience as an AI-cybersecurity company to outline five criteria: continuous monitoring, incident correlation, detection of anomalous activity, autonomous response, and proactive cyber resilience.
By embracing these principles and evolving cybersecurity practices in line with the state-of-the-art, organisations can comply with the NIS2 Directive while building a resilient cybersecurity posture capable of withstanding evolutions in the cyber threat landscape. Looking forward, it will be interesting to see how other jurisdictions embrace new technologies, such as AI, in solving the cybersecurity problem.
Get ahead with the NIS2 White Paper
Get a clear roadmap for meeting NIS2 requirements and strengthening your cybersecurity posture. Learn how to ensure compliance, mitigate risks, and protect your organization from evolving threats.
From Hype to Reality: How AI is Transforming Cybersecurity Practices
AI is everywhere, predominantly because it has changed the way humans interact with data. AI is a powerful tool for data analytics, predictions, and recommendations, but accuracy, safety, and security are paramount for operationalization.
In cybersecurity, AI-powered solutions are becoming increasingly necessary to keep up with modern business complexity and this new age of cyber-threat, marked by attacker innovation, use of AI, speed, and scale. The emergence of these new threats calls for a varied and layered approach in AI security technology to anticipate asymmetric threats.
While many cybersecurity vendors are adding AI to their products, they are not always communicating the capabilities or data used clearly. This is especially the case with Large Language Models (LLMs). Many products are adding interactive and generative capabilities which do not necessarily increase the efficacy of detection and response but rather are aligned with enhancing the analyst and security team experience and data retrieval.
Consequently, many people erroneously conflate generative AI with other types of AI. Similarly, only 31% of security professionals report that they are “very familiar” with supervised machine learning, the type of AI most often applied in today’s cybersecurity solutions to identify threats using attack artifacts and facilitate automated responses. This confusion around AI and its capabilities can result in suboptimal cybersecurity measures, overfitting, inaccuracies due to ineffective methods/data, inefficient use of resources, and heightened exposure to advanced cyber threats.
Vendors must cut through the AI market and demystify the technology in their products for safe, secure, and accurate adoption. To that end, let’s discuss common AI techniques in cybersecurity as well as how Darktrace applies them.
Modernizing cybersecurity with AI
Machine learning has presented a significant opportunity to the cybersecurity industry, and many vendors have been using it for years. Despite the high potential benefit of applying machine learning to cybersecurity, not every AI tool or machine learning model is equally effective due to its technique, application, and data it was trained on.
Supervised machine learning and cybersecurity
Supervised machine models are trained on labeled, structured data to facilitate automation of a human-led trained tasks. Some cybersecurity vendors have been experimenting with supervised machine learning for years, with most automating threat detection based on reported attack data using big data science, shared cyber-threat intelligence, known or reported attack behavior, and classifiers.
In the last several years, however, more vendors have expanded into the behavior analytics and anomaly detection side. In many applications, this method separates the learning, when the behavioral profile is created (baselining), from the subsequent anomaly detection. As such, it does not learn continuously and requires periodic updating and re-training to try to stay up to date with dynamic business operations and new attack techniques. Unfortunately, this opens the door for a high rate of daily false positives and false negatives.
Unsupervised machine learning and cybersecurity
Unlike supervised approaches, unsupervised machine learningdoes not require labeled training data or human-led training. Instead, it independently analyzes data to detect compelling patterns without relying on knowledge of past threats. This removes the dependency of human input or involvement to guide learning.
However, it is constrained by input parameters, requiring a thoughtful consideration of technique and feature selection to ensure the accuracy of the outputs. Additionally, while it can discover patterns in data as they are anomaly-focused, some of those patterns may be irrelevant and distracting.
When using models for behavior analytics and anomaly detection, the outputs come in the form of anomalies rather than classified threats, requiring additional modeling for threat behavior context and prioritization. Anomaly detection performed in isolation can render resource-wasting false positives.
LLMs and cybersecurity
LLMs are a major aspect of mainstream generative AI, and they can be used in both supervised and unsupervised ways. They are pre-trained on massive volumes of data and can be applied to human language, machine language, and more.
With the recent explosion of LLMs in the market, many vendors are rushing to add generative AI to their products, using it for chatbots, Retrieval-Augmented Generation (RAG) systems, agents, and embeddings. Generative AI in cybersecurity can optimize data retrieval for defenders, summarize reporting, or emulate sophisticated phishing attacks for preventative security.
But, since this is semantic analysis, LLMs can struggle with the reasoning necessary for security analysis and detection consistently. If not applied responsibly, generative AI can cause confusion by “hallucinating,” meaning referencing invented data, without additional post-processing to decrease the impact or by providing conflicting responses due to confirmation bias in the prompts written by different security team members.
Combining techniques in a multi-layered AI approach
Each type of machine learning technique has its own set of strengths and weaknesses, so a multi-layered, multi-method approach is ideal to enhance functionality while overcoming the shortcomings of any one method.
Darktrace’s multi-layered AI engine is powered by multiple machine learning approaches, which operate in combination for cyber defense. This allows Darktrace to protect the entire digital estates of the organizations it secures, including corporate networks, cloud computing services, SaaS applications, IoT, Industrial Control Systems (ICS), and email systems.
Plugged into the organization’s infrastructure and services, our AI engine ingests and analyzes the raw data and its interactions within the environment and forms an understanding of the normal behavior, right down to the granular details of specific users and devices. The system continually revises its understanding about what is normal based on evolving evidence, continuously learning as opposed to baselining techniques.
This dynamic understanding of normal partnered with dozens of anomaly detection models means that the AI engine can identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign. Understanding anomalies through the lens of many models as well as autonomously fine-tuning the models’ performances gives us a higher understanding and confidence in anomaly detection.
The next layer provides event correlation and threat behavior context to understand the risk level of an anomalous event(s). Every anomalous event is investigated by Cyber AI Analyst that uses a combination of unsupervised machine learning models to analyze logs with supervised machine learning trained on how to investigate. This provides anomaly and risk context along with investigation outcomes with explainability.
The ability to identify activity that represents the first footprints of an attacker, without any prior knowledge or intelligence, lies at the heart of the AI system’s efficacy in keeping pace with threat actor innovations and changes in tactics and techniques. It helps the human team detect subtle indicators that can be hard to spot amid the immense noise of legitimate, day-to-day digital interactions. This enables advanced threat detection with full domain visibility.
Digging deeper into AI: Mapping specific machine learning techniques to cybersecurity functions
Visibility and control are vital for the practical adoption of AI solutions, as it builds trust between human security teams and their AI tools. That is why we want to share some specific applications of AI across our solutions, moving beyond hype and buzzwords to provide grounded, technical explanations.
Darktrace’s technology helps security teams cover every stage of the incident lifecycle with a range of comprehensive analysis and autonomous investigation and response capabilities.
Behavioral prediction: Our AI understands your unique organization by learning normal patterns of life. It accomplishes this with multiple clustering algorithms, anomaly detection models, Bayesian meta-classifier for autonomous fine-tuning, graph theory, and more.
Real-time threat detection: With a true understanding of normal, our AI engine connects anomalous events to risky behavior using probabilistic models.
Investigation: Darktrace performs in-depth analysis and investigation of anomalies, in particular automating Level 1 of a SOC team and augmenting the rest of the SOC team through prioritization for human-led investigations. Some of these methods include supervised and unsupervised machine learning models, semantic analysis models, and graph theory.
Response: Darktrace calculates the proportional action to take in order to neutralize in-progress attacks at machine speed. As a result, organizations are protected 24/7, even when the human team is out of the office. Through understanding the normal pattern of life of an asset or peer group, the autonomous response engine can isolate the anomalous/risky behavior and surgically block. The autonomous response engine also has the capability to enforce the peer group’s pattern of life when rare and risky behavior continues.
Customizable model editor: This layer of customizable logic models tailors our AI’s processing to give security teams more visibility as well as the opportunity to adapt outputs, therefore increasing explainability, interpretability, control, and the ability to modify the operationalization of the AI output with auditing.
Figure 1. Alerts can be customized in the model editor in many ways like editing the thresholds for rarity and unusualness scores above.
Machine learning is the fundamental ally in cyber defense
Traditional security methods, even those that use a small subset of machine learning, are no longer sufficient, as these tools can neither keep up with all possible attack vectors nor respond fast enough to the variety of machine-speed attacks, given their complexity compared to known and expected patterns.
Security teams require advanced detection capabilities, using multiple machine learning techniques to understand the environment, filter the noise, and take action where threats are identified.
Darktrace’s multi-layered AI comes together to achieve behavioral prediction, real-time threat detection and response, and incident investigation, all while empowering your security team with visibility and control.