Blog
/
/
July 29, 2020

WeTransfer Impersonation Attacks Caught by Darktrace AI

Darktrace email finds two WeTransfer impersonation attacks caught by AI. Learn how Antigena Email detected and stopped malicious spoofing attempts effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Jul 2020

In recent months, Antigena Email has seen a surge in email attacks claiming to be from file sharing site WeTransfer. These attacks attempt to deploy malware into the recipient’s device and further infiltrate an organization.

This is a common technique deployed by attackers, who find success in masquerading behind the trusted brand of well-known SaaS vendors. We’ve seen similar attacks recently with both QuickBooks and Microsoft Teams.

Incident one

This email was directed at an employee in the accounts department of a financial services organization in the APAC region.

100%

Mon Jun 15 2020, 03:14:30

From:wetransfer <noreply@noreply.com>

Recipient:Sun Jen <sun.jen@holdingsinc.com>

We sent you an invoice via WeTransfer

Email Tags

Suspicious Link

New Contact

Actions on Email

Double Lock Link

Move to Junk

Hold Message

Figure 1: An interactive snapshot of Antigena Email’s user interface

The subject line of this email – “We sent you an invoice via WeTransfer” – is typical of a solicitation attack. Hidden behind a button reading ‘Get your files’ was a webpage that contained malware but displayed a login page. If a user entered their username and password in an attempt to access this ‘invoice’, the malware would harvest their credentials and send them to the attacker.

Figure 2: The fake login page, branded as Microsoft Excel, which would have likely sent the credentials to a spreadsheet controlled by the attacker

This attack bypassed the other security tools in place, but was detected by Antigena Email due to a number of anomalies that when stitched together unmistakably reveal a threat.

Figure 3: Antigena Email’s dashboard reveals key metadata behind the email

Critical for Antigena Email’s detection of this attack was that the email contained an anomalous link. It would be highly unusual for WeTransfer to link to SharePoint – a direct competitor – in their emails. The AI also recognized that neither the employee in the accounting department nor anybody else in the organization had previously visited the domain in question, and deemed this email as 100% anomalous. These, and other characteristics, of the URL gave Darktrace’s AI reason to tag this email with the ‘Suspicious Link’ tag, prompting Antigena Email to double lock the offending link and hold the message back from the recipient’s inbox.

Incident two

A second incident leveraging WeTransfer’s name was detected just a week later at a law firm in Europe. This email was more sophisticated and even more convincing, appearing to come from the legitimate WeTransfer domain. However, it still set off over a dozen models, again prompting Antigena to lock links and hold the email back.

100%

Mon Jun 22 2020, 08:25:17

From:wetransfer <noreply@wetransfer.com>

Recipient:George Todd <george.todd@skirrowservices.com>

We sent you an invoice via WeTransfer

Email Tags

Spoofing

Suspicious Link

Spoofing Indicators

Moderate Communication History

Wide Distribution

Actions on Email

Lock Link

Double Lock Link

Move to Junk

Hold Message

Figure 4: An interactive UI snapshot of the second email

This attack went a step further. Whereas in the previous scenario the attacker simply changed the personal name, leveraging <noreply[.]com>, here the attacker has manipulated the headers to actually make the email appear to come from the WeTransfer domain.

Recent research unveiled at Black Hat this month indicates there could be as many as 18 different methods to mislead common email verification checks like Domain Keys Identified Mail (DKIM) and Domain-based Message Authentication, Reporting and Conformance (DMARC). Some of these techniques may be as simple as including two From lines in an email header, which may result in a mail server verifying the first From header while the email client displays the second From address. As a result, an email sent from an attacker’s mail server is verified as coming from a legitimate address; in this case <noreply@wetransfer[.]com>.

The familiarity of this apparent sender is reflected in the ‘Depth’ and ‘Width’ scores below of 19 and 47 respectively, indicating moderate communication history. However, Antigena Email reveals that the true sender is an unrelated and uncommon domain, and one that is unrelated to WeTransfer.

Figure 5: Analysis of the second email reveals that the host domain is unrelated to WeTransfer

Darktrace’s AI also detected two suspicious links within the email that were considered highly anomalous given previous communication between WeTransfer and the client (and importantly – the absence of a WeTransfer link!)

Figure 6: Two links in the email were considered highly anomalous and threatening

These unusual links combined with the recognition of a spoofing attempt prompted Antigena Email to deem this email as 100% anomalous and intervene, protecting the recipient — and business — from harm. Despite this second email attack employing more sophisticated attack methods, allowing it to evade legacy email tools and closely resembling a legitimate email, Darktrace’s AI was able to recognize an even wider array of indicators that prompted it to hold the email back.

Thanks to Darktrace analysts Thomas Nommensen and Andras Balogh for their insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Proactive Security

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI