Blog
/
/
April 29, 2020

How Email Attackers Are Buying Domain Names to Get Inboxes

Explore how mass domain purchasing allows cyber-criminals to stay ahead of legacy email tools — and how cyber AI stops the threats that slip through.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Apr 2020

It is by now common knowledge that the vast majority of cyber-threats start with an email. In the current working conditions, this is more true than ever – with a recent study reporting a 30,000% increase in phishing, websites, and malware targeting remote users.

Many email security tools struggle to detect threats they encounter for the first time. Attackers know this and are leveraging many techniques to take advantage of this fundamental flaw. This includes automation to mutate common threat variants, resulting in a massive increase in unknown threats. Another technique, which will be the focus of this blog post, is the rapid and widespread creation of new domains in order to evade reputation checks and signature-based detection.

The recent surge in domain creation

While traditional tools have to rely on identifying campaigns and patterns across multiple emails to establish whether or not an email is malicious, Cyber AI technology doesn’t require classifying emails into buckets in order to know they don’t belong. There is no need, therefore, to actively track campaigns. But as security researchers, it’s hard to miss some trends.

Since the coronavirus outbreak, we have seen the number of domains registered related to COVID-19 increase by 130,000. In this time, 60% of all spear phishing threats neutralized by Antigena Email were related to COVID-19 or remote work. Another recent study determined that 10,000 coronavirus-related domains are created every day, with roughly nine out of ten of these either malicious or attempting to generate sales of fake products.

With attackers also taking advantage of changing online behaviors arising from the pandemic, another trend we’ve seen is the proliferation of the keyword ‘Zoom’ in some of the unpopular domains that bypassed traditional tools, as attackers leverage the video conferencing platform’s recent rise in usage.

“I believe that hackers identified coronavirus as something users are desperate to find information on. Panic leads to irrational thinking and people forget the basics of cyber security.”

— COO, Atlas VPN

I recently wrote a blog post on the idea of ‘fearware’ and why it’s so successful. Right now, people are desperate for information, and attackers know this. Cyber-criminals play into fear, uncertainty, and doubt (FUD) through a number of mechanisms, and we have since seen a variety of imaginative attempts to engage recipients. These emails range from fake ‘virus trackers’, to sending emails purporting to be from Amazon, claiming an unmanageable rise in newly registered accounts, and demanding “re-registration” of the recipient’s credit card details should they wish to keep their account.

Domain name purchasing: A vicious cycle

Purchasing thousands of new domains and sending malicious emails en masse is a tried and tested technique that cyber-criminals have been leveraging for decades. Now with automation, they’re doing it faster than ever before.

Here’s why it works.

Traditional security tools work by analyzing emails in isolation, measuring them against static blacklists of ‘known bads’. By way of analogy, the gateway tool here is acting like a security guard standing at the perimeter of an organization’s physical premises, asking every individual who enters: “are you malicious?”

The binary answer to this sole question is extracted by looking at some metadata around the email, including the sender’s IP, their email address domain, and any embedded links or attachments. They analyze this data in a vacuum, and at face value, with no consideration towards the relationship between that data, the recipient, and the rest of the business. They run reputation checks, asking “have I seen this IP or domain before?” Crucially, if the answer is no, they let them straight through.

To spell that out, if the domain is brand new, it won’t have a reputation, and as these traditional tools have a limited ability to identify potential harmful elements via any other means, they have no choice but to let them in by default.

These methods barely scratch the surface of a much wider range of characteristics that a malicious email might contain. And as email threats get ever more sophisticated, the ‘innocent until proven guilty approach’ is not enough. For a comprehensive check, we would want to ask: does the domain have any previous relationship with the recipient? The organization as a whole? Does it look suspiciously visually similar to other domains? Is this the first time we’ve seen an inbound email from this user? Has anybody in the organization ever shared a link with this domain? Has any user ever visited this link?

Legacy tools are blatantly asking the wrong questions, to which attackers know the answers. And usually, they can skirt by these inattentive security guards by paying just a few pennies for new domains.

How to buy your way in

Let’s look at the situation from an attacker’s perspective. They just need one email to land and it could be keys to the kingdom, so an upfront purchase of a few thousand new domains will almost inevitably pay off. And they’d pay the price as long as it’s working and they’re profiting.

This is exactly what attackers are doing. Newly-registered domains consistently get through gateways until these traditional tools are armed with enough information to determine that the domains are bad, by which point thousands or even millions of emails could have been successfully delivered. As soon as the attack infrastructure is worn out, the attackers will abandon it, and very easily just purchase and deploy a new set of domains.

And so, the vicious cycle continues. Like a game of ‘whack-a-mole’, these legacy ‘solutions’ will continue to hammer down on recognized ‘bad’ emails – all the while more malicious domains are being created in the thousands in preparation for the next campaign. This is the ‘Domain Game’, and it’s a hard game for defenders to win.

Asking the right questions

Thankfully, the solution to this problem is as simple as the problem itself. It requires a movement away from the legacy approach and towards deploying technology that is up to par with the speed and scale of today’s attackers.

In the last two years, new technologies have emerged that leverage AI, seeking to understand the human behind the email address. Rather than inspecting incoming traffic at the surface-level and asking binary questions, this paradigm shift away from this insufficient legacy approach asks the right questions: not simply “are you malicious?”, but crucially: “do you belong?”

Informed by a nuanced understanding of the recipient, their peers, and the organization at large, every inbound, outbound, and internal email is analyzed in context, and is then re-analyzed over and over again in light of evolving evidence. Asking the right questions and understanding the human invariably sets a far higher standard for acceptable catch rates with unknown threats on first encounter. This approach far outpaces traditional email defenses which have proven to fail and leave companies and their employees vulnerable to malicious emails sitting in their inboxes.

Rather than desperately bashing away at blacklisted domains and IP addresses in an ill-fated attempt to beat the attackers, we can change the game altogether, tilting the scales in favor of the defenders – securing our inboxes and our organizations at large.

Learn more about Antigena Email.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Email

/

May 29, 2025

Why attack-centric approaches to email security can’t cope with modern threats

Default blog imageDefault blog image

What’s the problem with an attack-centric mindset?

For decades, traditional email security strategies have been built around an attack-centric mindset. Secure Email Gateways (SEGs) and other legacy solutions operate on the principle of identifying and blocking known threats. These systems rely heavily on predefined threat intelligence – blacklists, malware signatures, and reputation-based analysis – to filter out malicious content before it reaches the inbox.

While this approach was sufficient when email threats were relatively static and signature-based, it’s increasingly ineffective against the sophistication of modern attacks. Techniques like spear phishing, business email compromise (BEC), and supply chain attacks often bypass traditional SEG defenses because they lack obvious malicious indicators. Instead, they leverage social engineering, look-alike domains, and finely tuned spoofing tactics that are designed to evade detection.

The challenge extends beyond just legacy SEGs. Many modern email security providers have inherited the same attack-centric principles, even if they've reimagined the technology stack. While some vendors have shifted to API-based deployments and incorporated AI to automate pattern recognition, the underlying approach remains the same: hunting for threats based on known indicators. This methodology, though it’s undergone modernization using AI, still leaves gaps when it comes to novel, hyper-targeted threats that manipulate user behavior rather than deploy predictable malicious signatures. Attack-centric security will always remain one step behind the attacker.

By the way, native email security already covers the basics

One of the most overlooked realities in email security is that native solutions like Microsoft 365’s built-in security already handle much of the foundational work of attack-centric protection. Through advanced threat intelligence, anti-phishing measures, and malware detection, Microsoft 365 actively scans incoming emails for known threats, using global telemetry to identify patterns and block suspicious content before it even reaches the user’s inbox.

This means that for many organizations, a baseline level of protection against more obvious, signature-based attacks is already in place – but many are still disabling these protections in favour of another attack-centric solution. By layering another attack-centric solution on top, they are effectively duplicating efforts without enhancing their security posture. This overlap can lead to unnecessary complexity, higher costs, and a false sense of enhanced protection when in reality, it’s more of the same.

Rather than duplicating attack-centric protections, the real opportunity lies in addressing the gaps that remain: the threats that are specifically crafted to evade traditional detection methods. This is where a business-centric approach becomes indispensable, complementing the foundational security that’s already built into your infrastructure.

Introducing… the business-centric approach

To effectively defend against advanced threats, organizations need to adopt a business-centric approach to email security. Unlike attack-centric models that hunt for known threats, business-centric security focuses on understanding the typical behaviors, relationships, and communication patterns within your organization. Rather than solely reacting to threats as they are identified, this model continuously learns what “normal” looks like for each user and each inbox.

By establishing a baseline of expected behaviors, business-centric solutions can rapidly detect anomalies that suggest compromise, such as sudden changes in sending patterns, unusual login locations, or subtle shifts in communication tone. This proactive detection method is especially powerful against spear phishing, business email compromise (BEC), and supply chain attacks that are engineered to bypass static defenses. This approach also scales with your organization, learning and adapting as new users are onboarded, communication patterns evolve, and external partners are added.

In an era where AI-driven threats are becoming the norm, having email security that knows your users and inboxes better than the attacker does is a critical advantage.

Why native + business-centric email security is the winning formula

By pairing native security with a business-centric model, organizations can cover the full spectrum of threats – from signature-based malware to sophisticated, socially engineered attacks. Microsoft 365’s in-built security manages the foundational risks, while business-centric defense identifies subtle anomalies and targeted threats that legacy approaches miss.

Layering Darktrace on top of your native Microsoft security eliminates duplicate capabilities, costs and workflows without reducing functionality

Rather than layering redundant attack-centric solutions on top of existing protections, the future of email security lies in leveraging what’s already in place and building on it with smarter, behavior-based detection. The Swiss Cheese Model is a useful one to refer to here: by acknowledging that no single defense can offer complete protection, layering defenses that plug each other’s gaps – like slices of Swiss cheese – becomes critical.

This combination also allows security teams to focus their efforts more effectively. With native solutions catching broad-based, known threats, the business-centric layer can prioritize real anomalies, minimizing false positives and accelerating response times. Organizations benefit from reduced overlap, streamlined costs, and a stronger overall security posture.

Download the full guide to take the first step towards achieving your next-generation security stack.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Network

/

May 28, 2025

PumaBot: Novel Botnet Targeting IoT Surveillance Devices

password login screen on computerDefault blog imageDefault blog image

Introduction: PumaBot attacking IoT devices

Darktrace researchers have identified a custom Go-based Linux botnet named “PumaBot” targeting embedded Linux Internet of Things (IoT) devices. Rather than scanning the Internet, the malware retrieves a list of targets from a command-and-control (C2) server and attempts to brute-force SSH credentials. Upon gaining access, it receives remote commands and establishes persistence using system service files. This blog post provides a breakdown of its key functionalities, and explores binaries related to the campaign.

Technical Analysis

Filename: jierui

md5: cab6f908f4dedcdaedcdd07fdc0a8e38

The Go-based botnet gains initial access through brute-forcing SSH credentials across a list of harvested IP addresses. Once it identifies a valid credential pair, it logs in, deploys itself, and begins its replication process.

Overview of Jierui functions
Figure 1: Overview of Jierui functions.

The domain associated with the C2 server did not resolve to an IP address at the time of analysis. The following details are a result of static analysis of the malware.

The malware begins by retrieving a list of IP addresses of likely devices with open SSH ports from the C2 server (ssh.ddos-cc[.]org) via the getIPs() function. It then performs brute-force login attempts on port 22 using credential pairs also obtained from the C2 through the readLinesFromURL(), brute(), and trySSHLogin() functions.

Within trySSHLogin(), the malware performs several environment fingerprinting checks. These are used to avoid honeypots and unsuitable execution environments, such as restricted shells. Notably, the malware checks for the presence of the string “Pumatronix”, a manufacturer of surveillance and traffic camera systems, suggesting potential IoT targeting or an effort to evade specific devices [1].

Fingerprinting of “Pumatronix”.
Figure 2: Fingerprinting of “Pumatronix”.

If the environment passes these checks, the malware executes uname -a to collect basic system information, including the OS name, kernel version, and architecture. This data, along with the victim's IP address, port, username, and password, is then reported back to the C2 in a JSON payload.

Of note, the bot uses X-API-KEY: jieruidashabi, within a custom header when it communicates with the C2 server over HTTP.

The malware writes itself to /lib/redis, attempting to disguise itself as a legitimate Redis system file. It then creates a persistent systemd service in /etc/systemd/system, named either redis.service or mysqI.service (note the spelling of mysql with a capital I) depending on what has been hardcoded into the malware. This allows the malware to persist across reboots while appearing benign.

[Unit]
Description=redis Server Service

[Service]
Type=simple
Restart=always
RestartSec=1
User=root
ExecStart=/lib/redis e

[Install]
WantedBy=multi-user.target

In addition to gaining persistence with a systemd service, the malware also adds its own SSH keys into the users’ authorized_keys file. This ensures that access can be maintained, even if the service is removed.

A function named cleankill() contains an infinite loop that repeatedly attempts to execute the commands “xmrig” and “networkxm”. These are launched without full paths, relying on the system's PATH variable suggesting that the binaries may be downloaded or unpacked elsewhere on the system. The use of “time.Sleep” between attempts indicates this loop is designed to ensure persistence and possibly restart mining components if they are killed or missing.

During analysis of the botnet, Darktrace discovered related binaries that appear to be part of a wider campaign targeting Linux systems.

Filename: ddaemon
Md5: 48ee40c40fa320d5d5f8fc0359aa96f3

Ddaemon is a Go-based backdoor. The malware begins by parsing command line arguments and if conditions are met, enters a loop where it periodically verifies the MD5 hash of the binary. If the check fails or an update is available, it downloads a new version from a C2 server (db.17kp[.]xyz/getDdaemonMd5), verifies it and replaces the existing binary with a file of the same name and similar functionality (8b37d3a479d1921580981f325f13780c).

The malware uses main_downloadNetwork() to retrieve the binary “networkxm” into /usr/src/bao/networkxm. Additionally, the bash script “installx.sh” is also retrieved from the C2 and executed. The binary ensures persistence by writing a custom systemd service unit that auto starts on boot and executes ddaemon.

Filename: networkxm
Md5: be83729e943d8d0a35665f55358bdf88

The networkxm binary functions as an SSH brute-force tool, similar to the botnet. First it checks its own integrity using MD5 hashes and contacts the C2 server (db.17kp[.]xyz) to compare its hash with the latest version. If an update is found, it downloads and replaces itself.

Part of networkxm checking MD5 hash.
Figure 3: Part of networkxm checking MD5 hash.
MD5 hash
Figure 4: MD5 hash

After verifying its validity, it enters an infinite loop where it fetches a password list from the C2 (/getPassword), then attempts SSH connections across a list of target IPs from the /getIP endpoint. As with the other observed binaries, a systemd service is created if it doesn’t already exist for persistence in /etc/systemd/system/networkxm.service.

Bash script installx.sh.
Figure 5: Bash script installx.sh.

Installx.sh is a simple bash script used to retrieve the script “jc.sh” from 1.lusyn[.]xyz, set permissions, execute and clear bash history.

Figure 6: Snippet of bash script jc.sh.

The script jc.sh starts by detecting the operating system type Debian-based or Red Hat-based and determines the location of the pam_unix.so file. Linux Pluggable Authentication Modules (PAM) is a framework that allows for flexible and centralized user authentication on Linux systems. PAM allows system administrators to configure how users are authenticated for services like login, SSH, or sudo by plugging in various authentication modules.

Jc.sh then attempts to fetch the current version of PAM installed on the system and formats that version to construct a URL. Using either curl or wget, the script downloads a replacement pam_unix.so file from a remote server and replaces the existing one, after disabling file immutability and backing up the original.

The script also downloads and executes an additional binary named “1” from the same remote server. Security settings are modified including enabling PAM in the SSH configuration and disabling SELinux enforcement, before restarting the SSH service. Finally, the script removes itself from the system.

Filename: Pam_unix.so_v131
md5: 1bd6bcd480463b6137179bc703f49545

Based on the PAM version that is retrieved from the bash query, the new malicious PAM replaces the existing PAM file. In this instance, pam_unix.so_v131 was retrieved from the server based on version 1.3.1. The purpose of this binary is to act as a rootkit that steals credentials by intercepting successful logins. Login data can include all accounts authenticated by PAM, local and remote (SSH). The malware retrieves the logged in user, the password and verifies that the password is valid. The details are stored in a file “con.txt” in /usr/bin/.

Function storing logins to con.txt
Figure 7: Function storing logins to con.txt

Filename: 1

md5: cb4011921894195bcffcdf4edce97135

In addition to the malicious PAM file, a binary named “1” is also retrieved from the server http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc/1. The binary “1” is used as a watcher for the malicious PAM file using inotify to monitor for “con.txt” being written or moved to /usr/bin/.

Following the daemonize() function, the binary is run daemonized ensuring it runs silently in the background. The function read_and_send_files() is called which reads the contents of “/usr/bin/con.txt”, queries the system IP with ifconfig.me, queries SSH ports and sends the data to the remote C2 (http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api/).

Command querying SSH ports.
Figure 8: Command querying SSH ports.

For persistence, a systemd service (my_daemon.service) is created to autostart the binary and ensure it restarts if the service has been terminated. Finally, con.txt is deleted, presumably to remove traces of the malware.

Conclusion

The botnet represents a persistent Go-based SSH threat that leverages automation, credential brute-forcing, and native Linux tools to gain and maintain control over compromised systems. By mimicking legitimate binaries (e.g., Redis), abusing systemd for persistence, and embedding fingerprinting logic to avoid detection in honeypots or restricted environments, it demonstrates an intent to evade defenses.

While it does not appear to propagate automatically like a traditional worm, it does maintain worm-like behavior by brute-forcing targets, suggesting a semi-automated botnet campaign focused on device compromise and long-term access.

Recommendations

  1. Monitor for anomalous SSH login activity, especially failed login attempts across a wide IP range, which may indicate brute-force attempts.
  2. Audit systemd services regularly. Look for suspicious entries in /etc/systemd/system/ (e.g., misspelled or duplicate services like mysqI.service) and binaries placed in non-standard locations such as /lib/redis.
  3. Inspect authorized_keys files across user accounts for unknown SSH keys that may enable unauthorized access.
  4. Filter or alert on outbound HTTP requests with non-standard headers, such as X-API-KEY: jieruidashabi, which may indicate botnet C2 communication.
  5. Apply strict firewall rules to limit SSH exposure rather than exposing port 22 to the internet.

Appendices

References

1.     https://pumatronix.com/

Indicators of Compromise (IoCs)

Hashes

cab6f908f4dedcdaedcdd07fdc0a8e38 - jierui

a9412371dc9247aa50ab3a9425b3e8ba - bao

0e455e06315b9184d2e64dd220491f7e - networkxm

cb4011921894195bcffcdf4edce97135 - 1
48ee40c40fa320d5d5f8fc0359aa96f3 - ddaemon
1bd6bcd480463b6137179bc703f49545 - pam_unix.so_v131

RSA Key

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0tH30Li6Gduh0Jq5A5dO5rkWTsQlFttoWzPFnGnuGmuF+fwIfYvQN1z+WymKQmX0ogZdy/CEkki3swrkq29K/xsyQQclNm8+xgI8BJdEgTVDHqcvDyJv5D97cU7Bg1OL5ZsGLBwPjTo9huPE8TAkxCwOGBvWIKUE3SLZW3ap4ciR9m4ueQc7EmijPHy5qds/Fls+XN8uZWuz1e7mzTs0Pv1x2CtjWMR/NF7lQhdi4ek4ZAzj9t/2aRvLuNFlH+BQx+1kw+xzf2q74oBlGEoWVZP55bBicQ8tbBKSN03CZ/QF+JU81Ifb9hy2irBxZOkyLN20oSmWaMJIpBIsh4Pe9 @root

Network

http://ssh[.]ddos-cc.org:55554

http://ssh[.]ddos-cc.org:55554/log_success

http://ssh[.]ddos-cc.org:55554/get_cmd

http://ssh[.]ddos-cc.org:55554/pwd.txt

https://dow[.]17kp.xyz/

https://input[.]17kp.xyz/

https://db[.]17kp[.]xyz/

http://1[.]lusyn[.]xyz

http://1[.]lusyn[.]xyz/jc/1

http://1[.]lusyn[.]xyz/jc/jc.sh

http://1[.]lusyn[.]xyz/jc/aa

http://1[.]lusyn[.]xyz/jc/cs

http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api

http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc

Detection Rule

rule Linux_PumaBot

{

  meta:

      description = "Rule to match on PumaBot samples"

      author = "tgould@cadosecurity.com"

  strings:

      $xapikey = "X-API-KEY" ascii

      $get_ips = "?count=5000" ascii

      $exec_start = "ExecStart=/lib/redis" ascii

      $svc_name1 = "redis.service" ascii

      $svc_name2 = "mysqI.service" ascii

      $uname = "uname -a" ascii

      $pumatronix = "Pumatronix" ascii

  condition:

      uint32(0) == 0x464c457f and

      all of (

          $xapikey,

          $uname,

          $get_ips,

          $exec_start

      ) and any of (

          $svc_name1,

          $svc_name2

      ) and $pumatronix

}

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI