Blog
/
/
April 14, 2020

How Changing Online Habits Have Created New Email Attacks

New email behaviors such as increased subscriptions and remote presentation tools have given rise to a new wave of email cyber-attacks. Learn more here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mariana Pereira
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Apr 2020

For several weeks now, we’ve seen how cyber-criminals have used the ongoing global health crisis as a ‘fearware’ topic to mount and spread their attacks. But as more and more of the world’s population works from home, and as consumption of digital content subsequently increases, hackers are finding novel ways to exploit the full range of human emotions through sophisticated email attacks.

From attackers creating ‘digital fake’ campaigns that offer ‘advice’ for those self-isolating, to threat-actors masquerading behind trusted websites to launch malware, the last few weeks have demonstrated how quickly cyber-criminals can adapt their techniques in the email realm. This blog presents four ways hackers are changing their tactics in light of current trends and changing behaviors, and how security teams can react to defend against these developments.

Increased subscription

With a marked increase in digital subscription to entertainment sites and news sources, it should come as no surprise that spammers and hackers have doubled down on using fake newsletter subscriptions in their email attacks.

For security tools such as gateways and inboxes that look at the historic mail-flow, a new email subscription to a newsletter can look very much like any other – especially when the email passes all existing security tests and verifications. A brand new campaign or domain may not have been identified as malicious yet, and thus is allowed into the recipient’s inbox.

Analyzing emails within the broader business context gives a full understanding of the circumstances in which it was received. This requires looking beyond the inbox and considering the user’s ‘pattern of life’ across all touchpoints across the digital ecosystem. In the case of benign subscription emails, a user will have recently visited the domain of the sender and requested the email newsletter. There is an action ahead of receiving the email – requesting it.

Drawing insights from both email traffic and the user’s wider ‘pattern of life’ across the digital business, AI can tell the difference between an email newsletter that has and has not been requested. This simple act alone can help security teams understand when a user has voluntarily signed up for a newsletter versus when they have been targeted by a malicious attack, enabling them to respond appropriately.

Rapid adoption of remote presentation sites

As remote working sees a rapid rise, there has been a sharp increase in the number of people using presentation creation sites. Darktrace has recently picked up on a large number of attacks in which these trusted sites have been exploited to openly host malicious links. Malicious payloads are embedded within presentations, which are then shared in emails that go undetected by gateway tools.

Figure 1: Canva and Infogram, two presentation sites leveraged in this latest string of attacks

Several indicators suggest that this activity originates from a single, well-organized threat-actor or group, including the rotational targeting of presentation sites (Canva, Infogram, Axel, Piktochart, and Sway), the highly-focused nature of the attack type (taking place within the space of two weeks), and the consistent nature of these emails. These emails were seen across a large number of deployments, which appeared to utilize a strikingly similar fake eFax notification format.

Worryingly, the emails appear to display none of the typical ‘trademark’ identifiers often seen for phishing emails, such as spoofed or impersonated email addresses or suspicious link strings. For this reason, they go undetected by products such as Microsoft’s spam and phishing tools. As such, they are currently being delivered to recipients’ inboxes without any alteration or addition of safety features.

This activity appears to represent a significant and currently unrecognized external threat. Whilst the novel nature of the activity allowed it to easily bypass legacy tools, a more nuanced understanding of the human behind the email address allowed Darktrace’s AI to uniquely identify this series of emails as highly threatening. The technology recognized that the links and domains were highly unusual, not only in the context of the recipients’ normal behavior, but the ‘pattern of life’ of their peer group and the organization at large.

An unprecedented convergence of personal and professional

While IT and compliance teams are having to find ways to keep digital environments secure in remote working conditions, users are also changing their own behavior – not only in terms of devices and tools accessed, but also in what content and files are consumed and interacted with. This convergence of the personal and the professional, and the resulting expansion in the attack surface, presents a new set of challenges to security teams. Compromised email credentials and hijacked accounts become even harder to spot.

Securing these environments requires technology that can adapt to the new way of working, without having to explicitly reconfigure or re-write the rules. Digital activity has changed overnight, and will only continue to change – security tools that cannot adapt and grow with that change will fast become redundant. By continuously learning and evolving its understanding of every user and device, AI is being relied upon to protect workers, especially as we now shift our behavior to use more cloud-based communication and collaboration tools.

Adaptive AI-powered attacks

A recent Forrester report found that over half of security professionals expect AI-augmented cyber-attacks to be made evident to the public within the next twelve months. One way this is likely to manifest itself is with the automation of well-crafted spear phishing campaigns.

As attackers use AI to better understand the type of content that each user interacts with, along with the prevalent emotions that drive each individual user, malware or malicious links can be masked in content that is highly targeted to specific users. Individuals who are actively seeking information on particular topics, or are more likely to share and forward light-hearted, humorous content may be targeted more frequently or aggressively.

Using AI to study the target, hackers can leverage insights at a speed and scale never seen before. With sophisticated domain spoofing, indiscriminate writing styles, and carefully hidden malicious links, human analysts and traditional security tools alike will stand little chance.

To prepare for this next wave of attacks, security teams themselves are relying on AI that analyzes emails in light of behaviors across email platforms and the organization at large. Rather than analyzing emails in isolation and at a single point in time, Cyber AI correlates insights over time, and continuously revisits emails many thousands of times as new evidence emerges.

While traditional defenses ask whether elements of an email have been observed in historical attacks, Antigena Email is the only solution that can reliably ask whether it would be unusual for a recipient to interact with a given email in the context of their normal ‘pattern of life’, as well as that of their peers and the wider organization. This contextual knowledge allows the AI to make highly accurate decisions and neutralize the full range of email attacks – from ‘clean’ spoofing emails that seek to wire a fraudulent payment to sophisticated spear phishing attempts.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mariana Pereira
VP, Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI