Blog
/
Email
/
April 10, 2023

Detecting Malicious Email Activity & AI Impersonating

Discover how two different phishing attempts from some known and unknown senders used a payroll diversion and credential sealing box link to harm users.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Isabelle Cheong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Apr 2023

Social engineering has become widespread in the cyber threat landscape in recent years, and the near-universal use of social media today has allowed attackers to research and target victims more effectively. Social engineering involves manipulating users to carry out actions such as revealing sensitive information like login credentials or credit card details. It can also lead to user account compromises, causing huge disruption to an organization’s digital estate. 

As people use social media platforms not only for personal reasons, but also for business purposes, attackers gain information they can exploit in social engineering attacks. For example, a threat actor may attempt to impersonate a known individual or legitimate service to take advantage of a user’s established trust. This is a highly successful method of social engineering because mimicking known contacts makes it difficult for traditional security tools that rely on deny-lists to detect the attack.

In October 2022, Darktrace identified and responded to two separate malicious email campaigns in which threat actors attempted to impersonate known contacts in an effort to compromise customer devices. As it learns the normal behavior of every user in the email system, Darktrace was able to instantly detect these threats and mitigate them autonomously, preventing significant disruption to the customer networks.

Payroll Diversion Fraud Attempt Impersonating a Former Employee 

While a customer in the Canadian energy sector was trialing Darktrace in October 2022, Darktrace/Email™ identified a suspicious email seemingly sent from an employee within the organization. The email was sent to the Senior Director of Human Resources (HR) with a subject line of “Change in payroll Direct Deposit.” The email requested a change in bank account information for an employee. However, Darktrace recognized that the sender was using a free mail address that contained random letters, indicating it may have been algorithmically generated. Since this incident occurred during a trial, Darktrace/Email was not configured to take action. Otherwise, it would have prevented the email from landing in the inbox. In this case though, the email went through, bypassing all other security tools in place.

Although the email was from an unknown sender, the HR director believed the email could have been legitimate as the employee who appeared to be the sender had left the organization seven days prior and no longer had access to their corporate email account. However, after reviewing it in the Darktrace/Email dashboard, the customer grew suspicious and contacted the former employee directly to verify if the request was legitimate. The former employee validated the suspicions by confirming they had sent no such email.

Further investigation by the customer revealed that the former employee had been vocal about their departure on various social media platforms. This gave threat actors valuable information to believably impersonate the former employee and defraud the organization. 

Such attempts to target organizations’ HR departments and divert payroll are common tactics for cyber-criminals and are often identified by Darktrace/Email across the customer base. Darktrace/Email is able to instantly identify the indicators associated with these spoofing attempts and immediately bring them to the attention of the customer’s security team. 

Using Legitimate File Sharing Service to Share a Phishing Link 

On October 7, 2022, a customer in the Singaporean construction sector was targeted by a phishing campaign attempting to impersonate a law firm known to the organization. Almost 200 employees received an email with the subject line “Accepted: Valuation Agreement.” 

Figure 1: Sample of an UI view of the message held showing anomaly indicators, history, association, and validation.

Four days earlier, Darktrace observed communication between another email address associated with the law firm and an employee of the customer. Darktrace/Email noted that it was the first time this correspondent had sent emails to the customer. 

Figure 2: Metrics showing how well the sender’s domain is known within the digital environment.

The emails contained a highly unusual link to a file sharing service, (hxxps://ssvilvensstokes[.]app[.]box[.]com/notes), hidden behind the text “PREVIEW OR PRINT COPY OF DOCUMENT HERE.” Darktrace analysts investigated this event further and found that around 30 similar URLs had been identified as suspicious using OSINT security tools in October 2022, suggesting the customer was not the only target of this phishing campaign.

Figure 3: Preview of the phishing email’s body.
Figure 4: Darktrace’s evaluation of the link contained in the phishing email.

Additional OSINT work revealed that the link directed to a website which appeared to host a PDF file named “Valuation Agreement.” The recipient would then be prompted to follow another link (hulking-citrine-krypton[.]glitch[.]me), again hidden behind the text “OPEN OR ACCESS DOCUMENT HERE” to view the file. Subsequently, the user would be prompted to enter their Microsoft 365 credentials. 

Figure 5: The page displayed when the phishing link was clicked, viewed in a sandbox environment.
Figure 6: Example of a page shown when recipient clicks the second link, accessing “hulking-citrine-krypton[.]glitch[.]me”. 

This page contained the text “This document has been scanned for viruses by Norton Antivirus Security.” This is another example of threat actors’ employing social engineering techniques by impersonating well-known brands, such as established security vendors, to gain the trust of users and increase their likelihood of success.

It is highly probable that a real employee of the law firm had their account hijacked and that a malicious actor was exploiting it to send out these phishing emails en masse as part of a supply chain attack. In such cases, malicious actors rely on their targets’ trust of known contacts to not question departures from their normal conversations. 

Darktrace was able to instantly detect multiple anomalies in these emails, despite the fact that they were seemingly sent by known correspondents. The activity detected automatically triggered model breaches associated with unexpected and visually prominent links. As a result, Darktrace/Email responded by locking the link, stopping users from being able to click it.

Darktrace subsequently identified additional emails from this sender attempting to target other recipients within the company, triggering the model breaches associated with a surge in email sending indicative of a phishing campaign. In response, Darktrace/Email autonomously acted and filed these emails as junk. As more emails were detected across the customer’s environment, the anomaly score of the sender increased and Darktrace ultimately held back over 160 malicious emails, safeguarding recipients from potential account compromise.           

The following Darktrace/Email models were breached throughout the course of this phishing campaign:

  • Unusual/Sender Surge 
  • Unusual/Undisclosed Recipients 
  • Antigena Anomaly 
  • Association/Unlikely Recipient Association 
  • Link/Low Link Association 
  • Link/Visually Prominent Link 
  • Link/Visually Prominent Link Unexpected For Sender 
  • Unusual/New Sender Wide Distribution
  • Unusual/Undisclosed Recipients + New Address Known Domain

Conclusion

Social engineering plays a role in many of the major threats challenging current email cyber security, as attackers can use it to manipulate users into transferring money, revealing credentials, clicking malicious links, and more. 

The above threat stories happened before language generating AI became mainstream with the release of ChatGPT in December 2022. Now, it is even easier for malicious actors to generate sophisticated social engineering emails. By using social media posts as input, social engineering emails written by generative AI can be highly targeted and produced at scale. They often avoid the flags users are trained to look for, like poor grammar and spelling mistakes, and can hide payloads or forgo them entirely.

To mitigate the risk of possible social engineering attempts, it is recommended that organizations implement social media policies that advise employees to be cautious of what they post online and enact procedures to verify if fund transfer requests are legitimate.

Yet these policies are not enough on their own. Darktrace/Email can identify suspicious email traits, whether an email is sent from a known correspondent or an unknown sender. With Self-Learning AI, it knows an organization’s users better than any impersonator could. In this way, Darktrace/Email detects anomalies within emails and neutralizes malicious components at machine-speed, stopping attacks at their earliest stages, before employees fall victim. 

Appendices

List of Indicators of Compromise (IoCs)

Domain:

hxxps://ssvilvensstokes[.]app[.]box[.]com/notes/*?s=* - 1st external link (seen in email)

hxxps://hulking-citrine-krypton[.]glitch[.]me/flk.html - 2nd external link, masked behind “OPEN OR ACCESS DOCUMENT HERE”

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Isabelle Cheong
Cyber Security Analyst

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI