Blog
/
Email
/
March 29, 2023

Email Security & Future Innovations: Educating Employees

As online attackers change to targeted and sophisticated attacks, Darktrace stresses the importance of protection and utilizing steady verification codes.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Mar 2023

In an escalating threat landscape with email as the primary target, IT teams need to move far beyond traditional methods of email security that haven’t evolved fast enough – they’re trained on historical attack data, so only catch what they’ve seen before. By design, they are permanently playing catch up to continually innovating attackers, taking an average of 13 days to recognize new attacks[1]

Phishing attacks are getting more targeted and sophisticated as attackers innovate in two key areas: delivery tactics, and social engineering. On the malware delivery side, attackers are increasingly ‘piggybacking’ off the legitimate infrastructure and reputations of services like SharePoint and OneDrive, as well as legitimate email accounts, to evade security tools. 

To evade the human on the other end of the email, attackers are tapping into new social engineering tactics, exploiting fear, uncertainty, and doubt (FUD) and evoking a sense of urgency as ever, but now have tools at their disposal to enable tailored and personalized social engineering at scale. 

With the help of tools such as ChatGPT, threat actors can leverage AI technologies to impersonate trusted organizations and contacts – including damaging business email compromises, realistic spear phishing, spoofing, and social engineering. In fact, Darktrace found that the average linguistic complexity of phishing emails has jumped by 17% since the release of ChatGPT.  

This is just one example of accelerating attack sophistication – lowering the barrier to entry and improving outcomes for attackers. It forms part of a wider trend of the attack landscape moving from low-sophistication, low-impact, and generic phishing tactics - a 'spray and pray' approach - to more targeted, sophisticated, and higher impact attacks that fall outside of the typical detection remit for any tool relying on rules and signatures. Generative AI and other technologies in the attackers' toolkit will soon enable the launch of these attacks at scale, and only being able to catch known threats that have been seen before will no longer be enough.

Figure 1: The progression of attacks and relative coverage of email security tools

In an escalating threat landscape with email as the primary target, the vast majority of email security tools haven't evolved fast enough – they’re trained on historical attack data, so only catch what they’ve seen before. They look to the past to try and predict the next attack, and are designed to catch today’s attacks tomorrow.

Organizations are increasingly moving towards AI systems, but not all AI is the same, and the application of that AI is crucial. IT and security teams need to move towards email security that is context-aware and leverages AI for deep behavioral analysis. And it’s a proven approach, successfully catching attacks that slip by other tools across thousands of organizations. And email security today needs to be more about just protecting the inbox. It needs to address not just malicious emails, but the full 360-degree view of a user across their email messages and accounts, as well as extended coverage where email bleeds into collaboration tools/SaaS. For many organizations, the question is not if they should upgrade their email security, but when – how much longer can they risk relying on email security that’s stuck looking to the past?  

The Email Security Industry: Playing Catch-Up

Gateways and ICES (Integrated Cloud Email Security) providers have something in common: they look to past attacks in order to try to predict the future. They often rely on previous threat intelligence and on assembling ‘deny-lists’ of known bad elements of emails already identified as malicious – these tools fail to meet the reality of the contemporary threat landscape. Some of these tools attempt to use AI to improve this flawed approach, looking not only for direct matches, but using "data augmentation" to try and find similar-looking emails. But this approach is still inherently blind to novel threats. 

These tools tend to be resource-intensive, requiring constant policy maintenance combined with the hand-to-hand combat of releasing held-but-legitimate emails and holding back malicious phishing emails. This burden of manually releasing individual emails typically falls on security teams, teams that are frequently small with multiple areas of responsibility. The solution is to deploy technology that autonomously stops the bad while allowing the good through, and adapts to changes in the organization – technology that actually fits the definition of ‘set and forget’.  

Becoming behavioral and context-aware  

There is a seismic shift underway in the industry, from “secure” email gateways to intelligent AI-driven thinking. The right approach is to understand the behaviors of end users – how each person uses their inbox and what constitutes ‘normal’ for each user – in order to detect what’s not normal. It makes use of context – how and when people communicate, and with who – to spot the unusual and to flag to the user when something doesn’t look quite right – and why. Basically, a system that understands you. Not past attacks.  

Darktrace has developed a fundamentally different approach to AI, one that doesn’t learn what’s dangerous from historical data but from a deep continuous understanding of each organization and their users. Only a complex understanding of the normal day-to-day behavior of each employee can accurately determine whether or not an email actually belongs in that recipient’s inbox. 

Whether it’s phishing, ransomware, invoice fraud, executive impersonation, or a novel technique, leveraging AI for behavioral analysis allows for faster decision-making – it doesn’t need to wait for a Patient Zero to contain a new attack because it can stop malicious threats on first encounter. This increased confidence in detection allows for more a precise response – targeted action to remove only the riskiest parts of an email, rather than taking a broad blanket response out of caution – in order to reduce risk with minimal disruption to the business. 

Returning to our attack spectrum, as the attack landscape moves increasingly towards highly sophisticated attacks that use novel or seemingly legitimate infrastructure to deliver malware and induce victims, it has never been more important to detect and issue an appropriate response to these high-impact and targeted attacks. 

Fig 2: How Darktrace combined with native email security to cover the full spectrum of attacks

Understanding you and a 360° view of the end user  

We know that modern email security isn’t limited to the inbox alone – it has to encompass a full understanding of a user’s normal behavior across email and beyond. Traditional email tools are focused solely on inbound email as the point of breach, which fails to protect against the potentially catastrophic damage caused by a successful email attack once an account has been compromised.    

Fig 3: A 360° understanding of a user reveals their digital touchpoints beyond Microsoft

In order to have complete context around what is normal for a user, it’s crucial to understand their activity within Microsoft 365, Google Workspace, Salesforce, Dropbox, and even their device on the network. Monitoring devices (as well as inboxes) for symptoms of infection is crucial to determining whether or not an email has been malicious, and if similar emails need to be withheld in the future. Combining with data from cloud apps enables a more holistic view of identity-based attacks. 

Understanding a user in the context of the whole organization – which also means network, cloud, and endpoint data – brings additional context to light to improve decision making, and connecting email security with external data on the attack surface can help proactively find malicious domains, so that defenses can be hardened before an attack is even launched.

Educating and Engaging Your Employees

Ultimately, it’s employees who interact with any given email. If organizations can successfully empower this user base, they will end up with a smarter workforce, fewer successful attacks, and a security team with more time on their hands for better, strategic work. 

The tools that succeed best will be those that can leverage AI to help employees become more security-conscious. While some emails are evidently malicious and should never enter an employee’s inbox, there is a significant grey area of emails that have potentially risky elements. The majority of security tools will either withhold these emails completely – even though they might be business critical – or let them through scot-free. But what if these grey-area emails could in fact be used as training opportunities?    

As opposed to phishing simulation vendors, behavioral AI can improve security awareness holistically throughout organizations by training users with a light touch via their own inboxes – bringing the end user into the loop to harden defenses.  

The new frontier of email security fights AI with AI, and organizations who lag behind might end up learning the hard way. Read on for our blog series about how these technologies can transform the employee experience, dynamize deployment, augment security teams and form part of an integrated defensive loop.    

[1] 13 days is the mean average of phishing payloads active in the wild between the response of Darktrace/Email compared to the earliest of 16 independent feeds submitted by other email security technologies.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI