Blog
/
Email
/
April 10, 2023

Employee-Conscious Email Security Solutions in the Workforce

Email threats commonly affect organizations. Read Darktrace's expert insights on how to safeguard your business by educating employees about email security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Apr 2023

When considering email security, IT teams have historically had to choose between excluding employees entirely, or including them but giving them too much power and implementing unenforceable, trust-based policies that try to make up for it. 

However, just because email security should not rely on employees, this does not mean they should be excluded entirely. Employees are the ones interacting with emails daily, and their experiences and behaviors can provide valuable security insights and even influence productivity. 

AI technology supports employee engagement in this non-intrusive, nuanced way to not only maintain email security, but also enhance it. 

Finding a Balance of Employee Involvement in Security Strategies

Historically, security solutions offered ‘all or nothing’ approaches to employee engagement. On one hand, when employees are involved, they are unreliable. Employees cannot all be experts in security on top of their actual job responsibilities, and mistakes are bound to happen in fast-paced environments.  

Although there have been attempts to raise security awareness, they often have shortcomings, as training emails lack context and realism, leaving employees with poor understandings that often lead to reporting emails that are actually safe. Having users constantly triaging their inboxes and reporting safe emails wastes time that takes away from their own productivity as well as the productivity of the security team.

Other historic forms of employee involvement also put security at risk. For example, users could create blanket rules through feedback, which could lead to common problems like safe-listing every email that comes from the gmail.com domain. Other times, employees could choose for themselves to release emails without context or limitations, introducing major risks to the organization. While these types of actions include employees to participate in security, they do so at the cost of security. 

Even lower stakes employee involvement can prove ineffective. For example, excessive warnings when sending emails to external contacts can lead to banner fatigue. When employees see the same warning message or alert at the top of every message, it’s human nature that they soon become accustomed and ultimately immune to it.

On the other hand, when employees are fully excluded from security, an opportunity is missed to fine-tune security according to the actual users and to gain feedback on how well the email security solution is working. 

So, both options of historically conventional email security, to include or exclude employees, prove incapable of leveraging employees effectively. The best email security practice strikes a balance between these two extremes, allowing more nuanced interactions that maintain security without interrupting daily business operations. This can be achieved with AI that tailors the interactions specifically to each employee to add to security instead of detracting from it. 

Reducing False Reports While Improving Security Awareness Training 

Humans and AI-powered email security can simultaneously level up by working together. AI can inform employees and employees can inform AI in an employee-AI feedback loop.  

By understanding ‘normal’ behavior for every email user, AI can identify unusual, risky components of an email and take precise action based on the nature of the email to neutralize them, such as rewriting links, flattening attachments, and moving emails to junk. AI can go one step further and explain in non-technical language why it has taken a specific action, which educates users. In contrast to point-in-time simulated phishing email campaigns, this means AI can share its analysis in context and in real time at the moment a user is questioning an email. 

The employee-AI feedback loop educates employees so that they can serve as additional enrichment data. It determines the appropriate levels to inform and teach users, while not relying on them for threat detection

In the other direction, the AI learns from users’ activity in the inbox and gradually factors this into its decision-making. This is not a ‘one size fits all’ mechanism – one employee marking an email as safe will never result in blanket approval across the business – but over time, patterns can be observed and autonomous decision-making enhanced.  

Figure 1: The employee-AI feedback loop increases employee understanding without putting security at risk.

The employee-AI feedback loop draws out the maximum potential benefits of employee involvement in email security. Other email security solutions only consider the security team, enhancing its workflow but never considering the employees that report suspicious emails. Employees who try to do the right thing but blindly report emails never learn or improve and end up wasting their own time. By considering employees and improving security awareness training, the employee-AI feedback loop can level up users. They learn from the AI explanations how to identify malicious components, and so then report fewer emails but with greater accuracy. 

While AI programs have classically acted like black boxes, Darktrace trains its AI on the best data, the organization’s actual employees, and invites both the security team and employees to see the reasoning behind its conclusions. Over time, employees will trust themselves more as they better learn how to discern unsafe emails. 

Leveraging AI to Generate Productivity Gains

Uniquely, AI-powered email security can have effects outside of security-related areas. It can save time by managing non-productive email. As the AI constantly learns employee behavior in the inbox, it becomes extremely effective at detecting spam and graymail – emails that aren't necessarily malicious, but clutter inboxes and hamper productivity. It does this on a per-user basis, specific to how each employee treats spam, graymail, and newsletters. The AI learns to detect this clutter and eventually learns which to pull from the inbox, saving time for the employees. This highlights how security solutions can go even further than merely protecting the email environment with a light touch, to the point where AI can promote productivity gains by automating tasks like inbox sorting.

Preventing Email Mishaps: How to Deal with Human Error

Improved user understanding and decision making cannot stop natural human error. Employees are bound to make mistakes and can easily send emails to the wrong people, especially when Outlook auto-fills the wrong recipient. This can have effects ranging anywhere from embarrassing to critical, with major implications on compliance, customer trust, confidential intellectual property, and data loss. 

However, AI can help reduce instances of accidentally sending emails to the wrong people. When a user goes to send an email in Outlook, the AI will analyze the recipients. It considers the contextual relationship between the sender and recipients, the relationships the recipients have with each other, how similar each recipient’s name and history is to other known contacts, and the names of attached files.  

If the AI determines that the email is outside of a user’s typical behavior, it may alert the user. Security teams can customize what the AI does next: it can block the email, block the email but allow the user to override it, or do nothing but invite the user to think twice. Since the AI analyzes each email, these alerts are more effective than consistent, blanket alerts warning about external recipients, which often go ignored. With this targeted approach, the AI prevents data leakage and reduces cyber risk. 

Since the AI is always on and continuously learning, it can adapt autonomously to employee changes. If the role of an employee evolves, the AI will learn the new normal, including common behaviors, recipients, attached file names, and more. This allows the AI to continue effectively flagging potential instances of human error, without needing manual rule changes or disrupting the employee’s workflow. 

Email Security Informed by Employee Experience

As the practical users of email, employees should be considered when designing email security. This employee-conscious lens to security can strengthen defenses, improve productivity, and prevent data loss.  

In these ways, email security can benefit both employees and security teams. Employees can become another layer of defense with improved security awareness training that cuts down on false reports of safe emails. This insight into employee email behavior can also enhance employee productivity by learning and sorting graymail. Finally, viewing security in relation to employees can help security teams deploy tools that reduce data loss by flagging misdirected emails. With these capabilities, Darktrace/Email™ enables security teams to optimize the balance of employee involvement in email security.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Cloud

/

January 15, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Cloud

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI