Blog
/

Email

/
March 29, 2023

Email Security & Future Innovations: Educating Employees

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Mar 2023
As online attackers change to targeted and sophisticated attacks, Darktrace stresses the importance of protection and utilizing steady verification codes.

In an escalating threat landscape with email as the primary target, IT teams need to move far beyond traditional methods of email security that haven’t evolved fast enough – they’re trained on historical attack data, so only catch what they’ve seen before. By design, they are permanently playing catch up to continually innovating attackers, taking an average of 13 days to recognize new attacks[1]

Phishing attacks are getting more targeted and sophisticated as attackers innovate in two key areas: delivery tactics, and social engineering. On the malware delivery side, attackers are increasingly ‘piggybacking’ off the legitimate infrastructure and reputations of services like SharePoint and OneDrive, as well as legitimate email accounts, to evade security tools. 

To evade the human on the other end of the email, attackers are tapping into new social engineering tactics, exploiting fear, uncertainty, and doubt (FUD) and evoking a sense of urgency as ever, but now have tools at their disposal to enable tailored and personalized social engineering at scale. 

With the help of tools such as ChatGPT, threat actors can leverage AI technologies to impersonate trusted organizations and contacts – including damaging business email compromises, realistic spear phishing, spoofing, and social engineering. In fact, Darktrace found that the average linguistic complexity of phishing emails has jumped by 17% since the release of ChatGPT.  

This is just one example of accelerating attack sophistication – lowering the barrier to entry and improving outcomes for attackers. It forms part of a wider trend of the attack landscape moving from low-sophistication, low-impact, and generic phishing tactics - a 'spray and pray' approach - to more targeted, sophisticated, and higher impact attacks that fall outside of the typical detection remit for any tool relying on rules and signatures. Generative AI and other technologies in the attackers' toolkit will soon enable the launch of these attacks at scale, and only being able to catch known threats that have been seen before will no longer be enough.

Figure 1: The progression of attacks and relative coverage of email security tools

In an escalating threat landscape with email as the primary target, the vast majority of email security tools haven't evolved fast enough – they’re trained on historical attack data, so only catch what they’ve seen before. They look to the past to try and predict the next attack, and are designed to catch today’s attacks tomorrow.

Organizations are increasingly moving towards AI systems, but not all AI is the same, and the application of that AI is crucial. IT and security teams need to move towards email security that is context-aware and leverages AI for deep behavioral analysis. And it’s a proven approach, successfully catching attacks that slip by other tools across thousands of organizations. And email security today needs to be more about just protecting the inbox. It needs to address not just malicious emails, but the full 360-degree view of a user across their email messages and accounts, as well as extended coverage where email bleeds into collaboration tools/SaaS. For many organizations, the question is not if they should upgrade their email security, but when – how much longer can they risk relying on email security that’s stuck looking to the past?  

The Email Security Industry: Playing Catch-Up

Gateways and ICES (Integrated Cloud Email Security) providers have something in common: they look to past attacks in order to try to predict the future. They often rely on previous threat intelligence and on assembling ‘deny-lists’ of known bad elements of emails already identified as malicious – these tools fail to meet the reality of the contemporary threat landscape. Some of these tools attempt to use AI to improve this flawed approach, looking not only for direct matches, but using "data augmentation" to try and find similar-looking emails. But this approach is still inherently blind to novel threats. 

These tools tend to be resource-intensive, requiring constant policy maintenance combined with the hand-to-hand combat of releasing held-but-legitimate emails and holding back malicious phishing emails. This burden of manually releasing individual emails typically falls on security teams, teams that are frequently small with multiple areas of responsibility. The solution is to deploy technology that autonomously stops the bad while allowing the good through, and adapts to changes in the organization – technology that actually fits the definition of ‘set and forget’.  

Becoming behavioral and context-aware  

There is a seismic shift underway in the industry, from “secure” email gateways to intelligent AI-driven thinking. The right approach is to understand the behaviors of end users – how each person uses their inbox and what constitutes ‘normal’ for each user – in order to detect what’s not normal. It makes use of context – how and when people communicate, and with who – to spot the unusual and to flag to the user when something doesn’t look quite right – and why. Basically, a system that understands you. Not past attacks.  

Darktrace has developed a fundamentally different approach to AI, one that doesn’t learn what’s dangerous from historical data but from a deep continuous understanding of each organization and their users. Only a complex understanding of the normal day-to-day behavior of each employee can accurately determine whether or not an email actually belongs in that recipient’s inbox. 

Whether it’s phishing, ransomware, invoice fraud, executive impersonation, or a novel technique, leveraging AI for behavioral analysis allows for faster decision-making – it doesn’t need to wait for a Patient Zero to contain a new attack because it can stop malicious threats on first encounter. This increased confidence in detection allows for more a precise response – targeted action to remove only the riskiest parts of an email, rather than taking a broad blanket response out of caution – in order to reduce risk with minimal disruption to the business. 

Returning to our attack spectrum, as the attack landscape moves increasingly towards highly sophisticated attacks that use novel or seemingly legitimate infrastructure to deliver malware and induce victims, it has never been more important to detect and issue an appropriate response to these high-impact and targeted attacks. 

Fig 2: How Darktrace combined with native email security to cover the full spectrum of attacks

Understanding you and a 360° view of the end user  

We know that modern email security isn’t limited to the inbox alone – it has to encompass a full understanding of a user’s normal behavior across email and beyond. Traditional email tools are focused solely on inbound email as the point of breach, which fails to protect against the potentially catastrophic damage caused by a successful email attack once an account has been compromised.    

Fig 3: A 360° understanding of a user reveals their digital touchpoints beyond Microsoft

In order to have complete context around what is normal for a user, it’s crucial to understand their activity within Microsoft 365, Google Workspace, Salesforce, Dropbox, and even their device on the network. Monitoring devices (as well as inboxes) for symptoms of infection is crucial to determining whether or not an email has been malicious, and if similar emails need to be withheld in the future. Combining with data from cloud apps enables a more holistic view of identity-based attacks. 

Understanding a user in the context of the whole organization – which also means network, cloud, and endpoint data – brings additional context to light to improve decision making, and connecting email security with external data on the attack surface can help proactively find malicious domains, so that defenses can be hardened before an attack is even launched.

Educating and Engaging Your Employees

Ultimately, it’s employees who interact with any given email. If organizations can successfully empower this user base, they will end up with a smarter workforce, fewer successful attacks, and a security team with more time on their hands for better, strategic work. 

The tools that succeed best will be those that can leverage AI to help employees become more security-conscious. While some emails are evidently malicious and should never enter an employee’s inbox, there is a significant grey area of emails that have potentially risky elements. The majority of security tools will either withhold these emails completely – even though they might be business critical – or let them through scot-free. But what if these grey-area emails could in fact be used as training opportunities?    

As opposed to phishing simulation vendors, behavioral AI can improve security awareness holistically throughout organizations by training users with a light touch via their own inboxes – bringing the end user into the loop to harden defenses.  

The new frontier of email security fights AI with AI, and organizations who lag behind might end up learning the hard way. Read on for our blog series about how these technologies can transform the employee experience, dynamize deployment, augment security teams and form part of an integrated defensive loop.    

[1] 13 days is the mean average of phishing payloads active in the wild between the response of Darktrace/Email compared to the earliest of 16 independent feeds submitted by other email security technologies.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Book a 1-1 meeting with one of our experts
Share this article

Blog

/

December 9, 2024

/
No items found.

Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-2012 and 2024-9474)

Default blog imageDefault blog image

As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.

More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.

Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.

How did exploitation occur?

CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by simply supplying an HTTP request where a Palo Alto related authentication header can simply be set to “off”.  When accessing certain resource paths, users can cause the Nginx reverse server to send this authentication header without any prior processing[1].

CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device[2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.

Post-Exploitation Patterns of Activity

Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:

1. Exploit validation and initial payload retrieval

2. Command and control (C2) connectivity, potentially featuring further binary downloads

3. Potential reconnaissance and crypto-mining activity

Exploit Validation

Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.

Figure 1: Darktrace model alert logs detailing the HTTP request to an OAST domain immediately following PAN-OS device compromise.

Initial Payload Retrieval

Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.

In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.

While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.

The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server. External sources suggest that the content of the PHP script is similar to that of the Neo-reGeorg tunnel[3][4].

Figure 2: PCAP showing the client request and server response associated with the download of the y.sh script from 45.76.141[.]166. The body content of the HTTP response highlights a shebang command to run subsequent code as bash script. The content is base64 encoded and details PHP script for what appears to be a webshell that will likely be written to the firewall device.

While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP  38.180.147[.]18.

Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Specter RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft[5][6].

Figure 3: Advanced Search log metrics highlighting details of the “/palofd” file download over HTTP.

Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.

These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying the incorrect SSL certificate to the client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests potentially malicious processes, as there is no expected ambiguity of the domain for which the client is requesting content. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget[7].

C2 Communication and Additional Payloads

Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.

Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.

These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliver and Gzip formatting.

For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [8]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.

Figure 4: Sample of URIs observed in Advanced Search highlighting HTTP requests to 77.221.158[.]154 for Gzip content suggest of Sliver communication.
Figure 5: PCAP showing English word encoding for Sliver communication observed during post-exploitation C2 activity.

External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol, again using command line tools as user agents. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.

Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.

Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [8]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.

External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol, again using command line tools as user agents. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.

Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.

Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [8]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.

Figure 7: PCAP specifying the HTTP response headers and body content for the service.sh file request. The body content shown includes variable declarations for URLs that will eventually be called by the device shell via bash command.

Reconnaissance and Cryptomining

Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and  xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.

Figure 8: Model alert connection logs detailing the uncommon failed NTLM logins using an anonymous user account following PAN-OS exploitation.

Conclusion

Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.

Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.

Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.  

Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.

References

[1]: https://docs.paloaltonetworks.com/pan-os/10-1/pan-os-admin/firewall-administration/management-interfaces

[2]: https://security.paloaltonetworks.com/CVE-2024-9474

[3]: hxxps://cn-sec[.]com/archives/2514664.html

[4]: hxxps[:]//github[.]com/L-codes/Neo-reGeorg/blob/master/README-en.md

[5]: https://threatfox.abuse[.]ch/ioc/1346254/

[6]:https://www.virustotal.com/gui/file/4911396d80baff80826b96d6ea7e54758847c93fdbcd3b86b00946cfd7d1145b/detection

[7]: https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

[8] https://www.immersivelabs.com/blog/detecting-and-decrypting-sliver-c2-a-threat-hunters-guide

[9]: https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

Appendices

Darktrace Model Alerts

Anomalous Connection / Anomalous SSL without SNI to New External  

Anomalous Connection / Application Protocol on Uncommon Port  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint  

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname  

Anomalous Connection / New User Agent to IP Without Hostname  

Anomalous Connection / Posting HTTP to IP Without Hostname  

Anomalous Connection / Rare External SSL Self-Signed  

Anomalous File / EXE from Rare External Location

Anomalous File / Incoming ELF File  

Anomalous File / Mismatched MIME Type From Rare Endpoint  

Anomalous File / Multiple EXE from Rare External Locations  

Anomalous File / New User Agent Followed By Numeric File Download  

Anomalous File / Script from Rare External Location  

Anomalous File / Zip or Gzip from Rare External Location  

Anomalous Server Activity / Rare External from Server  

Compromise / Agent Beacon (Long Period)  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon to New Endpoint  

Compromise / Beacon for 4 Days  

Compromise / Beacon to Young Endpoint  

Compromise / Beaconing Activity To External Rare  

Compromise / High Priority Tunnelling to Bin Services  

Compromise / High Volume of Connections with Beacon Score  

Compromise / HTTP Beaconing to New IP  

Compromise / HTTP Beaconing to Rare Destination  

Compromise / Large Number of Suspicious Failed Connections  

Compromise / Large Number of Suspicious Successful Connections  

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Compromise / Suspicious Beaconing Behavior  

Compromise / Suspicious File and C2  

Compromise / Suspicious HTTP and Anomalous Activity  

Compromise / Suspicious TLS Beaconing To Rare External  

Compromise / Sustained SSL or HTTP Increase  

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint    

Device / Initial Attack Chain Activity  

Device / New User Agent  

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

RESOURCE DEVELOPMENT – Malware

EXECUTION – Scheduled Task/Job (Cron)

EXECUTION – Unix Shell

PERSISTENCE – Web Shell

DEFENSE EVASION – Masquerading (Masquerade File Type)

DEFENSE EVASION - Deobfuscate/Decode Files or Information

CREDENTIAL ACCESS – Brute Force

DISCOVERY – Remote System Discovery

COMMAND AND CONTROL – Ingress Tool Transfer

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

COMMAND AND CONTROL – Non-Standard Port

COMMAND AND CONTROL – Data Obfuscation

IMPACT – Resource Hijacking (Compute)

List of IoCs

IoC         –          Type         –        Description

  • sys.traceroute[.]vip     – Hostname - C2 Endpoint
  • 77.221.158[.]154     – IP - C2 Endpoint
  • 185.174.137[.]26     – IP - C2 Endpoint
  • 93.113.25[.]46     – IP - C2 Endpoint
  • 104.131.69[.]106     – IP - C2 Endpoint
  • 95.164.5[.]41     – IP - C2 Endpoint
  • bristol-beacon-assets.s3.amazonaws[.]com     – Hostname - Payload Server
  • img.dxyjg[.]com     – Hostname - Payload Server
  • 38.180.147[.]18     – IP - Payload Server
  • 143.198.1[.]178     – IP - Payload Server
  • 185.208.156[.]46     – IP - Payload Server
  • 185.196.9[.]154     – IP - Payload Server
  • 46.8.226[.]75     – IP - Payload Server
  • 223.165.4[.]175     – IP - Payload Server
  • 188.166.244[.]81     – IP - Payload Server
  • bristol-beaconassets.s3[.]amazonaws[.]com/Y5bHaYxvd84sw     – URL - Payload
  • img[.]dxyjg[.]com/KjQfcPNzMrgV     – URL - Payload
  • 38.180.147[.]18/palofd     – URL - Payload
  • 90f6890fa94b25fbf4d5c49f1ea354a023e06510     – SHA1 - Associated to file /palofd
  • 143.198.1[.]178/7Z0THCJ     – URL - Payload
  • 8d82ccdb21425cf27b5feb47d9b7fb0c0454a9ca     – SHA1 - Associated to file /7Z0THCJ
  • fefd0f93dcd6215d9b8c80606327f5d3a8c89712     – SHA1 - Associated to file /7Z0THCJ
  • e5464f14556f6e1dd88b11d6b212999dd9aee1b1     – SHA1 - Associated to file /7Z0THCJ
  • 143.198.1[.]178/o4VWvQ5pxICPm     – URL - Payload
  • 185.208.156[.]46/lUuL095knXd62DdR6umDig     – URL - Payload
  • 185.196.9[.]154/ykKDzZ5o0AUSfkrzU5BY4w     – URL - Payload
  • 46.8.226[.]75/1.txt     – URL - Payload
  • 223.165.4[.]175/x6     – URL - Payload
  • 45.76.141[.]166/y.sh     – URL - Payload
  • repositorylinux[.]org/linux.sh     – URL - Payload
  • repositorylinux[.]org/cron.sh     – URL - Payload

Continue reading
About the author
Adam Potter
Senior Cyber Analyst

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI