Blog
/
/
February 24, 2021

LockBit Ransomware Analysis: Compromised Credentials

Darktrace examines how a LockBit ransomware attack that took place over just four hours was caused by one compromised credential. Read more here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Feb 2021

Lockbit ransomware found

LockBit ransomware was recently identified by Darktrace's Cyber AI during a trial with a retail company in the US. After an initial foothold was established via a compromised administrative credential, internal reconnaissance, lateral movement, and encryption of files occurred simultaneously, allowing the ransomware to steamroll through the digital system in just a few hours.

This incident serves as the latest reminder that ransomware campaigns now move through organizations at a speed that far outpaces human responders, demonstrating the need for machine-speed Autonomous Response to contain the threat before damage is done.

Lockbit ransomware defined

First discovered in 2019, LockBit is a relatively new family of ransomware that quickly exploits commonly available protocols and tools like SMB and PowerShell. It was originally known as ‘ABCD’ due the filename extension of the encrypted files, before it started using the current .lockbit extension. Since those early beginnings, it has evolved into one of the most calamitous strains of malware to date, asking for an average ransom of around $40,000 per organization.

As cyber-criminals level up the speed and scale of their attacks, ransomware remains a critical concern for organizations across every industry. In the past 12 months, Darktrace has observed an increase of over 20% in ransomware incidents across its customer base. Attackers are constantly developing new threat variants targeting exploits, utilizing off-the-shelf tools, and profiting from the burgeoning Ransomware-as-a-Service (RaaS) business model.

How does LockBit work?

In a typical attack, a threat actor will spend days or weeks inside a system, manually screening for the best way to grind the victim’s business to a halt. This phase tends to expose multiple indicators of compromise such as command and control (C2) beaconing, which Darktrace AI identifies in real time.

LockBit, however, only requires the presence of a human for a number of hours, after which it propagates through a system and infects other hosts on its own, without the need for human oversight. Crucially, the malware performs reconnaissance and continues to spread during the encryption phase. This allows it to cause maximal damage faster than other manual approaches.

AI-powered defense is essential in fighting back against these machine-driven attacks, which have the capacity to spread at speed and scale, and often go undetected by signature-based security tools. Cyber AI augments human teams by not only detecting the subtle signs of a threat, but autonomously responding in seconds, quicker than any human can be expected to react.

Ransomware analysis: Breaking down a LockBit attack with AI

Figure 1: Timeline of attack on the infected host and the encryption host. The infected host was the device initially infected with LockBit, which then spread to the encryption host, the device which performed the encryption.

Initial compromise

The attack commenced when a cyber-criminal gained access to a single privileged credential – either through a brute-force attack on an externally facing device, as seen in previous LockBit ransomware attacks, or simply with a phishing email. With the use of this credential, the device was able to spread and encrypt files within hours of the initial infection.

Had the method of infiltration been via phishing attack, a route that has become increasingly popular in recent months, Darktrace/ EMAIL would have withheld the email and stripped the malicious payloads, and so prevented the attack from the outset.

Limiting permissions, the use of strong passwords, and multi-factor authentication (MFA), are critical in preventing the exploitation of standard network protocols in such attacks.

Internal reconnaissance

At 14:19 local time, the first of many WMI commands (ExecMethod) to multiple internal destinations was performed by an internal IP address over DCE-RPC. This series of commands occurred throughout the encryption process. Given these commands were unusual in the context of the normal ‘pattern of life’ for the organization, Darktrace DETECT alerted the security team to each of these connections.

Within three minutes, the device had started to write executable files over SMB to hidden shares on multiple destinations – many of which were the same. File writes to hidden shares are ordinarily restricted. However, the unauthorized use of an administrative credential granted these privileges. The executable files were written to the Windows / Temp directory. Filenames had a similar formatting: .*eck[0-9]?.exe

Darktrace identified each of these SMB writes as a potential threat, since such administrative activity was unexpected from the compromised device.

The WMI commands and executable file writes continued to be made to multiple destinations. In less than two hours, the ExecMethod command was delivered to a critical device – the ‘encryption host’ – shortly followed by an executable file write (eck3.exe) to its hidden c$ share.

LockBit’s script has the capability to check its current privileges and, if non-administrative, it attempts to bypass using Windows User Account Control (UAC). This particular host did provide the required privileges to the process. Once this device was infected, encryption began.

File encryption

Only one second after encryption had started, Darktrace alerted on the unusual file extension appendage in addition to the previous, high-fidelity alerts for earlier stages of the attack lifecycle.

A recovery file – ‘Restore-My-Files.txt’ – was identified by Darktrace one second after the first encryption event. 8,998 recovery files were written, one to each encrypted folder.

An example of Darktrace’s Threat Visualizer showcasing anomalous SMB connections, with model breaches represented by dots.
Figure 2: An example of Darktrace’s Threat Visualizer showcasing anomalous SMB connections, with model breaches represented by dots.

The encryption host was a critical device that regularly utilized SMB. Exploiting SMB is a popular tactic for cyber-criminals. Such tools are so frequently used that it is difficult for signature-based detection methods to identify quickly whether their activity is malicious or not. In this case, Darktrace’s ‘Unusual Activity’ score for the device was elevated within two seconds of the first encryption, indicating that the device was deviating from its usual pattern of behavior.

Throughout the encryption process, Darktrace also detected the device performing network reconnaissance, enumerating shares on 55 devices (via srvsvc) and scanning over 1,000 internal IP addresses on nine critical TCP ports.

During this time, ‘Patient Zero’ – the initially infected device – continued to write executable files to hidden file shares. LockBit was using the initial device to spread the malware across the digital estate, while the ‘encryption host’ performed reconnaissance and encrypted the files simultaneously.

Despite Cyber AI detecting the threat even before the encryption had begun, the security team did not have eyes on Darktrace at the time of the attack. The intrusion was thus allowed to continue and over 300,000 files were encrypted and appended with the .lockbit extension. Four servers and 15 desktop devices were affected, before the attack was stopped by the administrators.

The rise of ‘hit and run’ ransomware

While most ransomware resides inside an organization for days or weeks, LockBit’s self-governing nature allows the attacker to ‘hit and run’, deploying the ransomware with minimal interaction required after the initial intrusion. The ability to detect anomalous activity across the entire digital infrastructure in real time is therefore crucial in LockBit’s prevention.

WMI and SMB are relied upon by the vast majority of companies around the world, and yet they were utilized in this attack to propagate through the system and encrypt hundreds of thousands of files. The prevalence and volume of these connections make them near-impossible to monitor with humans or signature-based detection techniques alone.

Moreover, the uniqueness of every enterprise’s digital estate impedes signature-based detection from effectively alerting on internal connections and the volume of such connections. Darktrace, however, uses machine learning to understand the individual pattern of behavior for each device, in this case allowing it to highlight the unusual internal activity as it occurred.

The organization involved did not have Darktrace’s Autonomous Response technology configured in active mode. If enabled, i would have surgically blocked the initial WMI operations and SMB drive writes that triggered the attack whilst allowing the critical network devices to continue standard operations. Even if the foothold had been established, D would have enforced the ‘pattern of life’ of the encryption host, preventing the cascade of encryption over SMB. This demonstrates the importance of meeting machine-speed attacks with autonomous cyber security, which reacts in real time to sophisticated threats when human security teams cannot.

LockBit has the ability to encrypt thousands of files in just seconds, even when targeting well-prepared organizations. This type of ransomware, with built-in worm-like functionality, is expected to become increasingly common over 2021. Such attacks can move at a speed which no human security team alone can match. Darktrace’s approach, which uses unsupervised machine learning, can respond in seconds to these rapid attacks and shut them down in their earliest stages.

Thanks to Darktrace analyst Isabel Finn for her insights on the above threat find.

Darktrace model detections:

  • Device / New or Uncommon WMI Activity
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / SMB Enumeration
  • Device / Network Scan – Low Anomaly Score
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Suspicious Read Write Ratio
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / Large Number of Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Proactive Security

/

January 7, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

AI

/

January 5, 2026

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface
Your data. Our AI.
Elevate your network security with Darktrace AI