Blog
/
/
February 24, 2021

LockBit Ransomware Analysis: Compromised Credentials

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Feb 2021
Darktrace examines how a LockBit ransomware attack that took place over just four hours was caused by one compromised credential. Read more here.

Lockbit ransomware found

LockBit ransomware was recently identified by Darktrace's Cyber AI during a trial with a retail company in the US. After an initial foothold was established via a compromised administrative credential, internal reconnaissance, lateral movement, and encryption of files occurred simultaneously, allowing the ransomware to steamroll through the digital system in just a few hours.

This incident serves as the latest reminder that ransomware campaigns now move through organizations at a speed that far outpaces human responders, demonstrating the need for machine-speed Autonomous Response to contain the threat before damage is done.

Lockbit ransomware defined

First discovered in 2019, LockBit is a relatively new family of ransomware that quickly exploits commonly available protocols and tools like SMB and PowerShell. It was originally known as ‘ABCD’ due the filename extension of the encrypted files, before it started using the current .lockbit extension. Since those early beginnings, it has evolved into one of the most calamitous strains of malware to date, asking for an average ransom of around $40,000 per organization.

As cyber-criminals level up the speed and scale of their attacks, ransomware remains a critical concern for organizations across every industry. In the past 12 months, Darktrace has observed an increase of over 20% in ransomware incidents across its customer base. Attackers are constantly developing new threat variants targeting exploits, utilizing off-the-shelf tools, and profiting from the burgeoning Ransomware-as-a-Service (RaaS) business model.

How does LockBit work?

In a typical attack, a threat actor will spend days or weeks inside a system, manually screening for the best way to grind the victim’s business to a halt. This phase tends to expose multiple indicators of compromise such as command and control (C2) beaconing, which Darktrace AI identifies in real time.

LockBit, however, only requires the presence of a human for a number of hours, after which it propagates through a system and infects other hosts on its own, without the need for human oversight. Crucially, the malware performs reconnaissance and continues to spread during the encryption phase. This allows it to cause maximal damage faster than other manual approaches.

AI-powered defense is essential in fighting back against these machine-driven attacks, which have the capacity to spread at speed and scale, and often go undetected by signature-based security tools. Cyber AI augments human teams by not only detecting the subtle signs of a threat, but autonomously responding in seconds, quicker than any human can be expected to react.

Ransomware analysis: Breaking down a LockBit attack with AI

Figure 1: Timeline of attack on the infected host and the encryption host. The infected host was the device initially infected with LockBit, which then spread to the encryption host, the device which performed the encryption.

Initial compromise

The attack commenced when a cyber-criminal gained access to a single privileged credential – either through a brute-force attack on an externally facing device, as seen in previous LockBit ransomware attacks, or simply with a phishing email. With the use of this credential, the device was able to spread and encrypt files within hours of the initial infection.

Had the method of infiltration been via phishing attack, a route that has become increasingly popular in recent months, Darktrace/Email would have withheld the email and stripped the malicious payloads, and so prevented the attack from the outset.

Limiting permissions, the use of strong passwords, and multi-factor authentication (MFA), are critical in preventing the exploitation of standard network protocols in such attacks.

Internal reconnaissance

At 14:19 local time, the first of many WMI commands (ExecMethod) to multiple internal destinations was performed by an internal IP address over DCE-RPC. This series of commands occurred throughout the encryption process. Given these commands were unusual in the context of the normal ‘pattern of life’ for the organization, Darktrace DETECT alerted the security team to each of these connections.

Within three minutes, the device had started to write executable files over SMB to hidden shares on multiple destinations – many of which were the same. File writes to hidden shares are ordinarily restricted. However, the unauthorized use of an administrative credential granted these privileges. The executable files were written to the Windows / Temp directory. Filenames had a similar formatting: .*eck[0-9]?.exe

Darktrace identified each of these SMB writes as a potential threat, since such administrative activity was unexpected from the compromised device.

The WMI commands and executable file writes continued to be made to multiple destinations. In less than two hours, the ExecMethod command was delivered to a critical device – the ‘encryption host’ – shortly followed by an executable file write (eck3.exe) to its hidden c$ share.

LockBit’s script has the capability to check its current privileges and, if non-administrative, it attempts to bypass using Windows User Account Control (UAC). This particular host did provide the required privileges to the process. Once this device was infected, encryption began.

File encryption

Only one second after encryption had started, Darktrace alerted on the unusual file extension appendage in addition to the previous, high-fidelity alerts for earlier stages of the attack lifecycle.

A recovery file – ‘Restore-My-Files.txt’ – was identified by Darktrace one second after the first encryption event. 8,998 recovery files were written, one to each encrypted folder.

Figure 2: An example of Darktrace’s Threat Visualizer showcasing anomalous SMB connections, with model breaches represented by dots.

The encryption host was a critical device that regularly utilized SMB. Exploiting SMB is a popular tactic for cyber-criminals. Such tools are so frequently used that it is difficult for signature-based detection methods to identify quickly whether their activity is malicious or not. In this case, Darktrace’s ‘Unusual Activity’ score for the device was elevated within two seconds of the first encryption, indicating that the device was deviating from its usual pattern of behavior.

Throughout the encryption process, Darktrace also detected the device performing network reconnaissance, enumerating shares on 55 devices (via srvsvc) and scanning over 1,000 internal IP addresses on nine critical TCP ports.

During this time, ‘Patient Zero’ – the initially infected device – continued to write executable files to hidden file shares. LockBit was using the initial device to spread the malware across the digital estate, while the ‘encryption host’ performed reconnaissance and encrypted the files simultaneously.

Despite Cyber AI detecting the threat even before the encryption had begun, the security team did not have eyes on Darktrace at the time of the attack. The intrusion was thus allowed to continue and over 300,000 files were encrypted and appended with the .lockbit extension. Four servers and 15 desktop devices were affected, before the attack was stopped by the administrators.

The rise of ‘hit and run’ ransomware

While most ransomware resides inside an organization for days or weeks, LockBit’s self-governing nature allows the attacker to ‘hit and run’, deploying the ransomware with minimal interaction required after the initial intrusion. The ability to detect anomalous activity across the entire digital infrastructure in real time is therefore crucial in LockBit’s prevention.

WMI and SMB are relied upon by the vast majority of companies around the world, and yet they were utilized in this attack to propagate through the system and encrypt hundreds of thousands of files. The prevalence and volume of these connections make them near-impossible to monitor with humans or signature-based detection techniques alone.

Moreover, the uniqueness of every enterprise’s digital estate impedes signature-based detection from effectively alerting on internal connections and the volume of such connections. Darktrace, however, uses machine learning to understand the individual pattern of behavior for each device, in this case allowing it to highlight the unusual internal activity as it occurred.

The organization involved did not have Darktrace RESPOND – Darktrace’s Autonomous Response technology – configured in active mode. If enabled, RESPOND would have surgically blocked the initial WMI operations and SMB drive writes that triggered the attack whilst allowing the critical network devices to continue standard operations. Even if the foothold had been established, RESPOND would have enforced the ‘pattern of life’ of the encryption host, preventing the cascade of encryption over SMB. This demonstrates the importance of meeting machine-speed attacks with autonomous cyber security, which reacts in real time to sophisticated threats when human security teams cannot.

LockBit has the ability to encrypt thousands of files in just seconds, even when targeting well-prepared organizations. This type of ransomware, with built-in worm-like functionality, is expected to become increasingly common over 2021. Such attacks can move at a speed which no human security team alone can match. Darktrace’s approach, which uses unsupervised machine learning, can respond in seconds to these rapid attacks and shut them down in their earliest stages.

Thanks to Darktrace analyst Isabel Finn for her insights on the above threat find.

Darktrace model detections:

  • Device / New or Uncommon WMI Activity
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / SMB Enumeration
  • Device / Network Scan – Low Anomaly Score
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Suspicious Read Write Ratio
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / Large Number of Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
No items found.
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Identity

/

January 29, 2025

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 28, 2025

RansomHub Ransomware: investigación de Darktrace sobre la herramienta más nueva en ShadowSyndicate's Arsenal

Default blog imageDefault blog image

What is ShadowSyndicate?

ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].

What is RansomHub?

First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].

ShadowSyndicate and RansomHub

External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].

Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].

In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.

Darktrace’s coverage of ShadowSyndicate and RansomHub

Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.

Attack Overview

Timeline attack overview of ransomhub ransomware

Internal Reconnaissance

The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.

C2 Communication and Data Exfiltration

In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.

Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.

Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.

Lateral Movement

In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.

The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.

Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.
Figure 1: Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.

Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.

File Encryption

Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.

Figure 2: The graph shows the behavior of a device with encryption activity, using the “SMB Sustained Mimetype Conversion” and “Unusual Activity Events” metrics over three weeks.

Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.

Figure 3: Cyber AI Analyst panel showing the critical incidents of the affected device from one of the cases investigated.

In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.

Figure 4: A list of suggested Autonomous Response actions on the affected devices."

Conclusion

The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.

For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.

Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)

Appendices

Darktrace Model Detections

Antigena Models / Autonomous Response:

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / External Threat / Antigena File then New Outbound Block


Network Reconnaissance:

Device / Network Scan

Device / ICMP Address Scan

Device / RDP Scan
Device / Anomalous LDAP Root Searches
Anomalous Connection / SMB Enumeration
Device / Spike in LDAP Activity

C2:

Enhanced Monitoring - Device / Lateral Movement and C2 Activity

Enhanced Monitoring - Device / Initial Breach Chain Compromise

Enhanced Monitoring - Compromise / Suspicious File and C2

Compliance / Remote Management Tool On Server

Anomalous Connection / Outbound SSH to Unusual Port


External Data Transfer:

Enhanced Monitoring - Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Compliance / SSH to Rare External Destination

Anomalous Connection / Application Protocol on Uncommon Port

Enhanced Monitoring - Anomalous File / Numeric File Download

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous Server Activity / Outgoing from Server

Device / Large Number of Connections to New Endpoints

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Lateral Movement:

User / New Admin Credentials on Server

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous File / Internal / Executable Uploaded to DC

Anomalous Connection / Suspicious Activity On High Risk Device

File Encryption:

Compliance / SMB Drive Write

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Anomalous Connection / Suspicious Read Write Ratio

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

83.97.73[.]198 - IP - Data exfiltration endpoint

108.181.182[.]143 - IP - Data exfiltration endpoint

46.161.27[.]151 - IP - Data exfiltration endpoint

185.65.212[.]164 - IP - Data exfiltration endpoint

66[.]203.125.21 - IP - MEGA endpoint used for data exfiltration

89[.]44.168.207 - IP - MEGA endpoint used for data exfiltration

185[.]206.24.31 - IP - MEGA endpoint used for data exfiltration

31[.]216.148.33 - IP - MEGA endpoint used for data exfiltration

104.226.39[.]18 - IP - C2 endpoint

103.253.40[.]87 - IP - C2 endpoint

*.relay.splashtop[.]com - Hostname - C2 & data exfiltration endpoint

gfs***n***.userstorage.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

w.api.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

ams-rb9a-ss.ams.efscloud[.]net - Hostname - Data exfiltration endpoint

MITRE ATT&CK Mapping

Tactic - Technqiue

RECONNAISSANCE – T1592.004 Client Configurations

RECONNAISSANCE – T1590.005 IP Addresses

RECONNAISSANCE – T1595.001 Scanning IP Blocks

RECONNAISSANCE – T1595.002 Vulnerability Scanning

DISCOVERY – T1046 Network Service Scanning

DISCOVERY – T1018 Remote System Discovery

DISCOVERY – T1083 File and Directory Discovery
INITIAL ACCESS - T1189 Drive-by Compromise

INITIAL ACCESS - T1190 Exploit Public-Facing Application

COMMAND AND CONTROL - T1001 Data Obfuscation

COMMAND AND CONTROL - T1071 Application Layer Protocol

COMMAND AND CONTROL - T1071.001 Web Protocols

COMMAND AND CONTROL - T1573.001 Symmetric Cryptography

COMMAND AND CONTROL - T1571 Non-Standard Port

DEFENSE EVASION – T1078 Valid Accounts

DEFENSE EVASION – T1550.002 Pass the Hash

LATERAL MOVEMENT - T1021.004 SSH

LATERAL MOVEMENT – T1080 Taint Shared Content

LATERAL MOVEMENT – T1570 Lateral Tool Transfer

LATERAL MOVEMENT – T1021.002 SMB/Windows Admin Shares

COLLECTION - T1185 Man in the Browser

EXFILTRATION - T1041 Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 Exfiltration to Cloud Storage

EXFILTRATION - T1029 Scheduled Transfer

IMPACT – T1486 Data Encrypted for Impact

References

1.     https://www.group-ib.com/blog/shadowsyndicate-raas/

2.     https://www.techtarget.com/searchsecurity/news/366617096/ESET-RansomHub-most-active-ransomware-group-in-H2-2024

3.     https://cyberint.com/blog/research/ransomhub-the-new-kid-on-the-block-to-know/

4.     https://www.cisa.gov/sites/default/files/2024-05/AA24-131A.stix_.xml

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore
Your data. Our AI.
Elevate your network security with Darktrace AI