Blog
/
/
May 3, 2021

Understanding Modern-Day Cyber Attacks

Discover how Darktrace detects and mitigates threats in IoT ecosystems and globalized supply chains that are constantly evolving.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
May 2021

It’s ten to five on a Friday afternoon. A technician has come in to perform a routine check on an electronic door. She enters the office with no issues – she works for a trusted third-party vendor, employees see her every week. She opens her laptop and connects to the Door Access Control Unit, a small Internet of Things (IoT) device used to operate the smart lock. Minutes later, trojans have been downloaded onto the company network, a crypto-mining operation has begun, and there is evidence of confidential data being exfiltrated. Where did things go wrong?

Threats in a business: A new dawn surfaces

As organizations keep pace with the demands of digital transformation, the attack surface has become broader than ever before. There are numerous points of entry for a cyber-criminal – from vulnerabilities in IoT ecosystems, to blind spots in supply chains, to insiders misusing their access to the business. Darktrace sees these threats every day. Sometimes, like in the real-world example above, which will be examined in this blog, they can occur in the very same attack.

Insider threats can use their familiarity and level of access to a system as a critical advantage when evading detection and launching an attack. But insiders don’t necessarily have to be malicious. Every employee or contractor is a potential threat: clicking on a phishing link or accidentally releasing data often leads to wide-scale breaches.

At the same time, connectivity in the workspace – with each IoT device communicating with the corporate network and the Internet on its own IP address – is an urgent security issue. Access control systems, for example, add a layer of physical security by tracking who enters the office and when. However, these same control systems imperil digital security by introducing a cluster of sensors, locks, alarm systems, and keypads, which hold sensitive user information and connect to company infrastructure.

Furthermore, a significant proportion of IoT devices are built without security in mind. Vendors prioritize time-to-market and often don’t have the resources to invest in baked-in security measures. Consider the number of start-ups which manufacture IoT – over 60% of home automation companies have fewer than ten employees.

Insider threat detected by Cyber AI

In January 2021, a medium-sized North American company suffered a supply chain attack when a third-party vendor connected to the control unit for a smart door.

Figure 1: The attack lasted 3.5 hours in total, commencing 16:50 local time.

The technician from the vendor’s company had come in to perform scheduled maintenance. They had been authorized to connect directly to the Door Access Control Unit, yet were unaware that the laptop they were using, brought in from outside of the organization, had been infected with malware.

As soon as the laptop connected with the control unit, the malware detected an open port, identified the vulnerability, and began moving laterally. Within minutes, the IoT device was seen making highly unusual connections to rare external IP addresses. The connections were made using HTTP and contained suspicious user agents and URIs.

Darktrace then detected that the control unit was attempting to download trojans and other payloads, including upsupx2.exe and 36BB9658.moe. Other connections were used to send base64 encoded strings containing the device name and the organization’s external IP address.

Cryptocurrency mining activity with a Monero (XMR) CPU miner was detected shortly afterwards. The device also utilized an SMB exploit to make external connections on port 445 while searching for vulnerable internal devices using the outdated SMBv1 protocol.

One hour later, the device connected to an endpoint related to the third-party remote access tool TeamViewer. After a few minutes, the device was seen uploading over 15 MB to a 100% rare external IP.

Figure 2: Timeline of the connections made by an example device on the days around an incident (blue). The connections associated with the compromise are a significant deviation from the device’s normal pattern of life, and result in multiple unusual activity events and repeated model breaches (orange).

Security threats in the supply chain

Cyber AI flagged the insider threat to the customer as soon as the control unit had been compromised. The attack had managed to bypass the rest of the organization’s security stack, for the simple reason that it was introduced directly from a trusted external laptop, and the IoT device itself was managed by the third-party vendor, so the customer had little visibility over it.

Traditional security tools are ineffective against supply chain attacks such as this. From the SolarWinds hack to Vendor Email Compromise, 2021 has put the nail in the coffin for signature-based security – proving that we cannot rely on yesterday’s attacks to predict tomorrow’s threats.

International supply chains and the sheer number of different partners and suppliers which modern organizations work with thus pose a serious security dilemma: how can we allow external vendors onto our network and keep an airtight system?

The first answer is zero-trust access. This involves treating every device as malicious, inside and outside the corporate network, and demanding verification at all stages. The second answer is visibility and response. Security products must shed a clear light into cloud and IoT infrastructure, and react autonomously as soon as subtle anomalies emerge across the enterprise.

IoT investigated

Darktrace’s Cyber AI Analyst reported on every stage of the attack, including the download of the first malicious executable file.

Figure 3: Example of Cyber AI Analyst detecting anomalous behavior on a device, including C2 connectivity and suspicious file downloads.

Cyber AI Analyst investigated the C2 connectivity, providing a high-level summary of the activity. The IoT device had accessed suspicious MOE files with randomly generated alphanumeric names.

Figure 4: A Cyber AI Analyst summary of C2 connectivity for a device.

Not only did the AI detect every stage of the activity, but the customer was also alerted via a Proactive Threat Notification following a high scoring model breach at 16:59, just minutes after the attack had commenced.

Stranger danger

Third parties coming in to tweak device settings and adjust the network can have unintended consequences. The hyper-connected world which we’re living in, with the advent of 5G and Industry 4.0, has become a digital playground for cyber-criminals.

In the real-world case study above, the IoT device was unsecured and misconfigured. With rushed creations of IoT ecosystems, intertwining supply chains, and a breadth of individuals and devices connecting to corporate infrastructure, modern-day organizations cannot expect simple security tools which rely on pre-defined rules to stop insider threats and other advanced cyber-attacks.

The organization did not have visibility over the management of the Door Access Control Unit. Despite this, and despite no prior knowledge of the attack type or the vulnerabilities present in the IoT device, Darktrace detected the behavioral anomalies immediately. Without Cyber AI, the infection could have remained on the customer’s environment for weeks or months, escalating privileges, silently crypto-mining, and exfiltrating sensitive company data.

Thanks to Darktrace analyst Grace Carballo for her insights on the above threat find.

Learn more about insider threats

Darktrace model detections:

  • Anomalous File/Anomalous Octet Stream
  • Anomalous Connection/New User Agent to IP Without Hostname
  • Unusual Activity/Unusual External Connectivity
  • Device/Increased External Connectivity
  • Anomalous Server Activity/Outgoing from Server
  • Device/New User Agent and New IP
  • Compliance/Cryptocurrency Mining Activity
  • Compliance/External Windows Connectivity
  • Anomalous File/Multiple EXE from Rare External Locations
  • Anomalous File/EXE from Rare External Location
  • Device/Large Number of Model Breaches
  • Anomalous File/Internet Facing System File Download
  • Device/Initial Breach Chain Compromise
  • Device/SMB Session Bruteforce
  • Device/Network Scan- Low Anomaly Score
  • Device/Large Number of Connections to New Endpoint
  • Anomalous Server Activity/Outgoing from Server
  • Compromise/Beacon to Young Endpoint
  • Anomalous Server Activity/Rare External from Server
  • Device/Multiple C2 Model Breaches
  • Compliance/Remote Management Tool on Server
  • Anomalous Connection/Data Sent to New External Device

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI